Abstract

Customer segmentation plays a critical role in enhancing a company’s product penetration rate in the market. It enables numerous downstream applications such as customer-oriented product development and trend analysis. Previous approaches to customer segmentation have relied either on survey-based methods or data-driven approaches. However, these methods face challenges such as high human labor requirements or the generation of noisy segments. To address these challenges, this paper proposes a new methodology based on data-driven network construction and an importance-enhanced framework. The framework incorporates two techniques: (1) the utilization of a neural network model to compute feature importance values and (2) the proposal of a novel network connection rule. This framework addresses the limitation of the previous approach, sentiment-polarity-based networking, by connecting customers based on feature importance. We further validated the effectiveness of the framework using three real-world datasets and demonstrated that the proposed method outperformed the previous approach.

References

1.
Marcus
,
C.
,
1998
, “
A Practical Yet Meaningful Approach to Customer Segmentation
,”
J. Consumer Mark.
,
15
(
5
), pp.
494
504
.
2.
Teichert
,
T.
,
Shehu
,
E.
, and
von Wartburg
,
I.
,
2008
, “
Customer Segmentation Revisited: The Case of the Airline Industry
,”
Transp. Res. Part A: Policy Pract.
,
42
(
1
), pp.
227
242
.
3.
Suryadi
,
D.
, and
Kim
,
H. M.
,
2019
, “
A Data-Driven Approach to Product Usage Context Identification From Online Customer Reviews
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121104
.
4.
Park
,
S.
, and
Kim
,
H.
,
2023
, “
Analysis of Brand Effects in Data-Driven Design Based on Online Reviews
,”
ASME J. Mech. Des.
,
145
(
12
), p.
121704
.
5.
Park
,
S.
, and
Kim
,
H.
,
2024
, “
Extracting Product Design Guidance From Online Reviews: An Explainable Neural Network-Based Approach
,”
Exp. Syst. Appl.
,
236
, p.
121357
.
6.
Higueras-Castillo
,
E.
,
Molinillo
,
S.
,
Coca-Stefaniak
,
J. A.
, and
Liebana-Cabanillas
,
F.
,
2020
, “
Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile
,”
Sustainability
,
12
(
11
), p.
4345
.
7.
Kim
,
J.
,
Park
,
S.
, and
Kim
,
H. M.
,
2022
, “
Analysis of Dynamic Changes in Customer Sentiment on Product Features After the Outbreak of Covid-19 Based on Online Reviews
,”
ASME J. Mech. Des.
,
144
(
2
), p.
024501
.
8.
Tucker
,
C.
, and
Kim
,
H.
,
2011
, “
Predicting Emerging Product Design Trend by Mining Publicly Available Customer Review Data
,”
ICED 11 – 18th International Conference on Engineering Design – Impacting Society Through Engineering Design
,
Copenhagen, Denmark
,
Aug. 15–18
, pp.
43
52
.
9.
Brace
,
I.
,
2018
,
Questionnaire Design: How to Plan, Structure and Write Survey Material for Effective Market Research
,
Kogan Page Publishers
,
London
.
10.
Knott
,
E.
,
Rao
,
A. H.
,
Summers
,
K.
, and
Teeger
,
C.
,
2022
, “
Interviews in the Social Sciences
,”
Nat. Rev. Methods Primers
,
2
(
1
), p.
73
.
11.
Taherdoost
,
H.
,
2022
, “
How to Conduct an Effective Interview; A Guide to Interview Design in Research Study
,”
Int. J. Acad. Res. Manage.
,
11
(
1
), pp.
39
51
.
12.
Gupta
,
S.
, and
Thornton
,
B.
,
2002
, “
Circumventing Social Desirability Response Bias in Personal Interview Surveys
,”
Am. J. Math. Manage. Sci.
,
22
(
3–4
), pp.
369
383
.
13.
Das
,
S.
, and
Nayak
,
J.
,
2022
, “Customer Segmentation Via Data Mining Techniques: State-of-the-Art Review,”
Comput. Intell. Data Mining: Proc. ICCIDM 2021
,
Janmenjoy
Nayak
, et al
, ed.,
Springer
,
Singapore
, pp.
489
507
.
14.
Ozan
,
Ş.
,
2018
, “
A Case Study on Customer Segmentation by Using Machine Learning Methods
,”
2018 International Conference on Artificial Intelligence and Data Processing (IDAP)
,
Malatya, Turkey
,
Sept. 28–30
, IEEE, pp.
1
6
.
15.
Forestier
,
G.
, and
Wemmert
,
C.
,
2016
, “
Semi-supervised Learning Using Multiple Clusterings With Limited Labeled Data
,”
Information Sciences
,
361
, pp.
48
65
.
16.
Ahmed
,
M.
,
Seraj
,
R.
, and
Islam
,
S. M. S.
,
2020
, “
The k-Means Algorithm: A Comprehensive Survey and Performance Evaluation
,”
Electronics
,
9
(
8
), p.
1295
.
17.
Joung
,
J.
, and
Kim
,
H.
,
2023
, “
Interpretable Machine Learning-Based Approach for Customer Segmentation for New Product Development From Online Product Reviews
,”
Int. J. Inf. Manage.
,
70
, p.
102641
.
18.
Park
,
S.
, and
Kim
,
H. M.
,
2022
, “
Finding Social Networks Among Online Reviewers for Customer Segmentation
,”
ASME J. Mech. Des.
,
144
(
12
), p.
121703
.
19.
Park
,
S.
, and
Kim
,
H. M.
,
2022
, “
Phrase Embedding and Clustering for Sub-feature Extraction From Online Data
,”
ASME J. Mech. Des.
,
144
(
5
), p.
054501
.
20.
Smith
,
W. R.
,
1995
, “
Product Differentiation and Market Segmentation as Alternative Marketing Strategies
,”
Mark. Manage.
,
4
(
3
), p.
63
.
21.
Cooil
,
B.
,
Aksoy
,
L.
, and
Keiningham
,
T. L.
,
2008
, “
Approaches to Customer Segmentation
,”
J. Relationsh. Mark.
,
6
(
3–4
), pp.
9
39
.
22.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
31st Conference on Neural Information Processing Systems (NIPS 2017)
,
Long Beach, CA
,
Dec. 4–9
.
23.
Chen
,
G.
, and
Bhattacharya
,
P.
,
2006
, “
Function Dot Product Kernels for Support Vector Machine
,”
18th International Conference on Pattern Recognition (ICPR'06)
,
Hong Kong, China
,
Sept. 18
.
24.
McCarty
,
J. A.
, and
Hastak
,
M.
,
2007
, “
Segmentation Approaches in Data-mining: A Comparison of RFM, Chaid, and Logistic Regression
,”
J. Bus. Res.
,
60
(
6
), pp.
656
662
.
25.
Hwang
,
H.
,
Jung
,
T.
, and
Suh
,
E.
,
2004
, “
An LTV Model and Customer Segmentation Based on Customer Value: A Case Study on the Wireless Telecommunication Industry
,”
Exp. Syst. Appl.
,
26
(
2
), pp.
181
188
.
26.
Saravanan
,
R.
, and
Sujatha
,
P.
,
2018
, “
A State of Art Techniques on Machine Learning Algorithms: A Perspective of Supervised Learning Approaches in Data Classification
,”
2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS)
,
Madurai, India
,
June 14–15
, IEEE, pp.
945
949
.
27.
Tuma
,
M. N.
,
Decker
,
R.
, and
Scholz
,
S. W.
,
2011
, “
A Survey of the Challenges and Pifalls of Cluster Analysis Application in Market Segmentation
,”
Int. J. Market Res.
,
53
(
3
), pp.
391
414
.
28.
Wang
,
M.
, and
Chen
,
W.
,
2015
, “
A Data-Driven Network Analysis Approach to Predicting Customer Choice Sets for Choice Modeling in Engineering Design
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071410
.
29.
Hamerly
,
G.
, and
Elkan
,
C.
,
2003
, “
Learning the k in k-Means
,”
Advances in Neural Information Processing Systems 16 (NIPS 2003)
,
British Columbia, Canada
,
Dec. 8–13, 2003
.
30.
Kansal
,
T.
,
Bahuguna
,
S.
,
Singh
,
V.
, and
Choudhury
,
T.
,
2018
, “
Customer Segmentation Using $k$-Means Clustering
,”
2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS)
,
Belgaum, India
,
Dec. 21–22
, IEEE, pp.
135
139
.
31.
Lundberg
,
S. M.
, and
Lee
,
S. I.
,
2017
, “
A unified approach to interpreting model predictions
,”
NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems
, pp.
4768
4777
.
32.
Pelleg
,
D.
, and
Moore
,
A. W.
,
2000
, “
X-Means: Extending K-Means With Efficient Estimation of the Number of Clusters
,”
International Conference on Machine Learning
,
Stanford, CA
,
June 29–July 2
, Vol. 1, pp.
727
734
.
33.
Park
,
S.
,
Lin
,
K.
,
Joung
,
J.
, and
Kim
,
H.
,
2023
, “
Investigation of Customer Preference Changes Following Covid-19 Market Disruption Using Online Review Analysis
,”
Proc. Des. Soc.
,
3
, pp.
2375
2384
.
34.
Hutto
,
C.
, and
Gilbert
,
E.
,
2014
, “
Vader: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text
,”
International AAAI Conference on Weblogs and Social Media
,
Ann Arbor, MI
,
June 1–4
, Vol. 8, pp.
216
225
.
35.
Hussain
,
A.
,
Tahir
,
A.
,
Hussain
,
Z.
,
Sheikh
,
Z.
,
Gogate
,
M.
,
Dashtipour
,
K.
,
Ali
,
A.
, and
Sheikh
,
A.
,
2021
, “
Artificial Intelligence-Enabled Analysis of Public Attitudes on Facebook and Twitter Toward Covid-19 Vaccines in the United Kingdom and the United States: Observational Study
,”
J. Med. Internet Res.
,
23
(
4
), p.
e26627
.
36.
Davidson
,
T.
,
Warmsley
,
D.
,
Macy
,
M.
, and
Weber
,
I.
,
2017
, “
Automated Hate Speech Detection and the Problem of Offensive Language
,”
International AAAI Conference on Web and Social Media
,
Montreal, Quebec, Canada
,
May 15–18
, Vol. 11, pp.
512
515
.
37.
Joung
,
J.
, and
Kim
,
H. M.
,
2021
, “
Approach for Importance-Performance Analysis of Product Attributes From Online Reviews
,”
ASME J. Mech. Des.
,
143
(
8
), p.
081705
.
38.
Li
,
Z.
,
Kamnitsas
,
K.
, and
Glocker
,
B.
,
2021
, “
Analyzing Overfitting Under Class Imbalance in Neural Networks for Image Segmentation
,”
IEEE Trans. Med. Imag.
,
40
(
3
), pp.
1065
1077
.
39.
Meng
,
Y.
,
Yang
,
N.
,
Qian
,
Z.
, and
Zhang
,
G.
,
2020
, “
What Makes an Online Review More Helpful: An Interpretation Framework Using Xgboost and Shap Values
,”
J. Theor. Appl. Electron. Commer. Res.
,
16
(
3
), pp.
466
490
.
40.
Mokhtari
,
K. E.
,
Higdon
,
B. P.
, and
Başar
,
A.
,
2019
, “
Interpreting Financial Time Series With Shap Values
,”
International Conference on Computer Science and Software Engineering
,
Toronto, Ontario, Canada
,
Nov. 4–6
, pp.
166
172
.
41.
Liashchynskyi
,
P.
, and
Liashchynskyi
,
P.
,
2019
, “Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS,” preprint arXiv:1912.06059.
42.
Blondel
,
V. D.
,
Guillaume
,
J.-L.
,
Lambiotte
,
R.
, and
Lefebvre
,
E.
,
2008
, “
Fast Unfolding of Communities in Large Networks
,”
J. Stat. Mech.: Theory Exp.
,
2008
(
10
), p.
P10008
.
43.
Fortunato
,
S.
, and
Barthelemy
,
M.
,
2007
, “
Resolution Limit in Community Detection
,”
Proc. Natl. Acad. Sci. USA
,
104
(
1
), pp.
36
41
.
44.
Park
,
S.
,
Jiang
,
Y.
, and
Kim
,
H.
,
2024
, “Importance-Induced Customer Segmentation Using Explainable Machine Learning,” .
45.
Štrumbelj
,
E.
, and
Kononenko
,
I.
,
2014
, “
Explaining Prediction Models and Individual Predictions With Feature Contributions
,”
Knowl. Inf. Syst.
,
41
, pp.
647
665
.
You do not currently have access to this content.