Abstract

As designers experience greater mental demands from the increased complexity of new design tools and methods, it is important to understand designers' cognitive load when performing design tasks. Several researchers have identified task- and designer-related factors that affect cognitive load, such as time or expected outcome. However, most of these design studies used self-report measures of cognitive load, which have been observed to be inaccurate and, to some extent, incomplete. In contrast, physiological measures (e.g., eye tracking) provide an objective assessment of mental workload. However, little research in engineering design has compared self-reported measures of cognitive load against physiological measures and our aim in this paper is to provide motivation and a starting point for such work. Specifically, we present a rich dataset comprising pupil diameter collected with ten student designers performing an hour-long loosely controlled design task using various design representations (e.g., computer-aided design and sketching). We also collected self-reported cognitive load using the NASA-TLX after the design task was completed. A preliminary analysis revealed that self-reported physical demand correlated with the minimum latent pupil diameter, whereas performance satisfaction correlated with the maximum latent pupil diameter. Furthermore, design representations vary in the range of cognitive load experienced by designers when utilizing them. These findings highlight the importance of statistical moments in the interpretation of physiological indicators such as pupil diameter. These findings also call for the use of a multi-modal approach for measuring cognitive load. Moreover, the accompanying dataset enables future research toward such studies.

References

1.
Cass
,
M.
, and
Prabhu
,
R.
,
2023
, “
Looking Beyond Self-Reported Cognitive Load: Investigating the Use of Eye Tracking in the Study of Design Representations in Engineering Design
,”
Proc. Des. Soc.
,
3
, pp.
2475
2484
.
2.
Sweller
,
J.
,
1988
, “
Cognitive Load During Problem Solving: Effects on Learning
,”
Cognit. Sci.
,
12
(
2
), pp.
257
285
.
3.
Jordan
,
J.
,
Wagner
,
J.
,
Manthey
,
D. E.
,
Wolff
,
M.
,
Santen
,
S.
, and
Cico
,
S. J.
,
2020
, “
Optimizing Lectures From a Cognitive Load Perspective
,”
AEM Educ. Train.
,
4
(
3
), pp.
306
312
.
4.
Paas
,
F. G. W. C.
,
Van Merriënboer
,
J. J. G.
, and
Adam
,
J. J.
,
1994
, “
Measurement of Cognitive Load in Instructional Research
,”
Percept. Mot. Skills
,
79
(
1
), pp.
419
430
.
5.
Zimmerer
,
C.
, and
Matthiesen
,
S.
,
2021
, “
Study on the Impact of Cognitive Load on Performance in Engineering Design
,”
Proc. Des. Soc.
,
1
, pp.
2761
2770
.
6.
Bruggen
,
A.
,
2015
, “
An Empirical Investigation of the Relationship Between Workload and Performance
,”
Manage. Decis.
,
53
(
10
), pp.
2377
2389
.
7.
Calpin
,
N.
, and
Menold
,
J.
,
2023
, “
The Cognitive Costs of Design Tasks: Examining Cognitive Load Through Verbal and Physical Indicators
,”
ASME J. Mech. Des.
,
145
(
10
), p.
101401
.
8.
Bilda
,
Z.
, and
Gero
,
J. S.
,
2007
, “
The Impact of Working Memory Limitations on the Design Process During Conceptualization
,”
Des. Stud.
,
28
(
4
), pp.
343
367
.
9.
Anderson
,
R. E.
, and
Helstrup
,
T.
,
1993
, “
Visual Discovery in Mind and on Paper
,”
Mem. Cogn.
,
21
(
3
), pp.
283
293
.
10.
Sun
,
G.
, and
Yao
,
S.
,
2012
, “
Investigating the Relation Between Cognitive Load and Creativity in the Conceptual Design Process
,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet.
,
56
(
1
), pp.
308
312
.
11.
Nolte
,
H.
, and
McComb
,
C.
,
2021
, “
The Cognitive Experience of Engineering Design: An Examination of First-Year Student Stress Across Principal Activities of the Engineering Design Process
,”
Des. Sci.
,
7
, p.
e3
.
12.
Mohamed-Ahmed
,
A.
,
Bonnardel
,
N.
,
Côté
,
P.
, and
Tremblay
,
S.
,
2013
, “
Cognitive Load Management and Architectural Design Outcomes
,”
Int. J. Des. Creat. Innov.
,
1
(
3
), pp.
160
176
.
13.
Longo
,
L.
,
2018
, “
On the Reliability, Validity and Sensitivity of Three Mental Workload Assessment Techniques for the Evaluation of Instructional Designs: A Case Study in a Third-Level Course
,”
Proceedings of the 10th International Conference on Computer Supported Education
,
Funchal, Madeira, Portugal
,
Mar. 15–17
, pp.
166
178
.
14.
Xiao
,
Y.-M.
,
Wang
,
Z.-M.
,
Wang
,
M.-Z.
, and
Lan
,
Y.-J.
,
2005
, “
The Appraisal of Reliability and Validity of Subjective Workload Assessment Technique and NASA-Task Load Index
,”
Chin. J. Ind. Hyg. Occup. Dis.
,
23
(
3
), pp.
178
181
.
15.
Borgianni
,
Y.
, and
Maccioni
,
L.
,
2020
, “
Review of the Use of Neurophysiological and Biometric Measures in Experimental Design Research
,”
AI EDAM
,
34
(
2
), pp.
248
285
.
16.
Krejtz
,
K.
,
Duchowski
,
A. T.
,
Niedzielska
,
A.
,
Biele
,
C.
, and
Krejtz
,
I.
,
2018
, “
Eye Tracking Cognitive Load Using Pupil Diameter and Microsaccades With Fixed Gaze
,”
PLoS One
,
13
(
9
), p.
e0203629
.
17.
Solhjoo
,
S.
,
Haigney
,
M. C.
,
McBee
,
E.
,
Van Merrienboer
,
J. J. G.
,
Schuwirth
,
L.
,
Artino
,
A. R.
,
Battista
,
A.
,
Ratcliffe
,
T. A.
,
Lee
,
H. D.
, and
Durning
,
S. J.
,
2019
, “
Heart Rate and Heart Rate Variability Correlate With Clinical Reasoning Performance and Self-Reported Measures of Cognitive Load
,”
Sci. Rep.
,
9
(
1
), p.
14668
.
18.
Antonenko
,
P.
,
Paas
,
F.
,
Grabner
,
R.
, and
Van Gog
,
T.
,
2010
, “
Using Electroencephalography to Measure Cognitive Load
,”
Educ. Psychol. Rev.
,
22
(
4
), pp.
425
438
.
19.
Hodson
,
J. L.
,
2016
, “
Measuring Cognitive Load: A Meta-Analysis of Load Measurement Sensitivity
,”
Master’s thesis
,
The University of Utah
.
Salt Lake City, UT
20.
Cherng
,
Y.-G.
,
Baird
,
T.
,
Chen
,
J.-T.
, and
Wang
,
C.-A.
,
2020
, “
Background Luminance Effects on Pupil Size Associated With Emotion and Saccade Preparation
,”
Sci. Rep.
,
10
(
1
), p.
15718
.
21.
Hart
,
S. G.
, and
Staveland
,
L. E.
,
1988
, “
Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research
,”
Adv. Psychol.
,
52
, pp.
139
183
.
22.
Reid
,
G. B.
, and
Nygren
,
T. E.
,
1988
, “
The Subjective Workload Assessment Technique: A Scaling Procedure for Measuring Mental Workload
,”
Adv. Psychol.
,
52
, pp.
185
218
.
23.
Tsang
,
P. S.
, and
Velazquez
,
V. L.
,
1996
, “
Diagnosticity and Multidimensional Subjective Workload Ratings
,”
Ergonomics
,
39
(
3
), pp.
358
381
.
24.
Leppink
,
J.
,
Paas
,
F.
,
Van Der Vleuten
,
C. P. M.
,
Van Gog
,
T.
, and
Van Merriënboer
,
J. J. G.
,
2013
, “
Development of an Instrument for Measuring Different Types of Cognitive Load
,”
Behav. Res.
,
45
(
4
), pp.
1058
1072
.
25.
De Winter
,
J. C. F.
,
2014
, “
Controversy in Human Factors Constructs and the Explosive Use of the NASA-TLX: A Measurement Perspective
,”
Cogn. Technol. Work
,
16
(
3
), pp.
289
297
.
26.
Tao
,
D.
,
Tan
,
H.
,
Wang
,
H.
,
Zhang
,
X.
,
Qu
,
X.
, and
Zhang
,
T.
,
2019
, “
A Systematic Review of Physiological Measures of Mental Workload
,”
IJERPH
,
16
(
15
), p.
2716
.
27.
Huggins
,
A.
, and
Claudio
,
D.
,
2018
, “
A Performance Comparison Between the Subjective Workload Analysis Technique and the NASA-TLX in a Healthcare Setting
,”
IISE Trans. Healthc. Syst. Eng.
,
8
(
1
), pp.
59
71
.
28.
Galy
,
E.
,
Paxion
,
J.
, and
Berthelon
,
C.
,
2018
, “
Measuring Mental Workload With the NASA-TLX Needs to Examine Each Dimension Rather Than Relying on the Global Score: An Example With Driving
,”
Ergonomics
,
61
(
4
), pp.
517
527
.
29.
Nguyen
,
P.
,
Nguyen
,
T. A.
, and
Zeng
,
Y.
,
2018
, “
Empirical Approaches to Quantifying Effort, Fatigue and Concentration in the Conceptual Design Process: An EEG Study
,”
Res. Eng. Des.
,
29
(
3
), pp.
393
409
.
30.
Nikulin
,
C.
,
Lopez
,
G.
,
Piñonez
,
E.
,
Gonzalez
,
L.
, and
Zapata
,
P.
,
2019
, “
NASA-TLX for Predictability and Measurability of Instructional Design Models: Case Study in Design Methods
,”
Educ. Technol. Res. Dev.
,
67
(
2
), pp.
467
493
.
31.
Pareek
,
S.
,
Sharma
,
V.
, and
Esfahani
,
E. T.
,
2015
, “
Human Factor Study in Gesture Based CAD Environment
,”
Volume 1B: 35th Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
Boston, MA
, p.
V01BT02A028
.
32.
Rogers
,
D.
, and
Salustri
,
F. A.
,
2013
, “
Comparative Evaluation of a Novel Concept Design Method
,”
Volume 12: Systems and Design
,
American Society of Mechanical Engineers
,
San Diego, CA
, p.
V012T13A028
.
33.
Simpson
,
T. W.
,
Barron
,
K.
,
Rothrock
,
L.
,
Frecker
,
M.
,
Barton
,
R. R.
, and
Ligetti
,
C.
,
2007
, “
Impact of Response Delay and Training on User Performance With Text-Based and Graphical User Interfaces for Engineering Design
,”
Res. Eng. Des.
,
18
(
2
), pp.
49
65
.
34.
Booth
,
J. W.
,
Bhasin
,
A. K.
, and
Ramani
,
K.
,
2014
, “
Art Meets Engineering Design: An Approach for Reducing Sketch Inhibition in Engineers During the Design Process
,”
Volume 3: 16th International Conference on Advanced Vehicle Technologies; 11th International Conference on Design Education; 7th Frontiers in Biomedical Devices
,
American Society of Mechanical Engineers
,
Buffalo, NY
, p.
V003T04A013
.
35.
Hu
,
W.-L.
,
Booth
,
J.
, and
Reid
,
T.
,
2015
, “
Reducing Sketch Inhibition During Concept Generation: Psychophysiological Evidence of the Effect of Interventions
,”
Volume 7: 27th International Conference on Design Theory and Methodology
,
American Society of Mechanical Engineers
,
Boston, MA
, p.
V007T06A010
.
36.
De Waard
,
D.
, and
Lewis-Evans
,
B.
,
2014
, “
Self-Report Scales Alone Cannot Capture Mental Workload: A Reply to De Winter, Controversy in Human Factors Constructs and the Explosive Use of the NASA TLX: A Measurement Perspective
,”
Cogn. Technol. Work
,
16
(
3
), pp.
303
305
.
37.
Chen
,
L.
, and
Pu
,
P.
,
2010
, “Eye-Tracking Study of User Behavior in Recommender Interfaces,”
User Modeling, Adaptation, and Personalization
,
P.
De Bra
,
A.
Kobsa
, and
D.
Chin
, eds.,
Springer
,
Berlin Heidelberg
, pp.
375
380
.
38.
Dalton
,
K. M.
,
Nacewicz
,
B. M.
,
Johnstone
,
T.
,
Schaefer
,
H. S.
,
Gernsbacher
,
M. A.
,
Goldsmith
,
H. H.
,
Alexander
,
A. L.
, and
Davidson
,
R. J.
,
2005
, “
Gaze Fixation and the Neural Circuitry of Face Processing in Autism
,”
Nat. Neurosci.
,
8
(
4
), pp.
519
526
.
39.
Kee
,
J.
,
Knuth
,
M.
,
Lahey
,
J. N.
, and
Palma
,
M. A.
,
2021
, “
Does Eye-Tracking Have an Effect on Economic Behavior?
,”
PLoS One
,
16
(
8
), p.
e0254867
.
40.
Ayres
,
P.
,
Lee
,
J. Y.
,
Paas
,
F.
, and
Van Merriënboer
,
J. J. G.
,
2021
, “
The Validity of Physiological Measures to Identify Differences in Intrinsic Cognitive Load
,”
Front. Psychol.
,
12
, p.
702538
.
41.
Skaramagkas
,
V.
,
Giannakakis
,
G.
,
Ktistakis
,
E.
,
Manousos
,
D.
,
Karatzanis
,
I.
,
Tachos
,
N.
,
Tripoliti
,
E.
,
Marias
,
K.
,
Fotiadis
,
D. I.
, and
Tsiknakis
,
M.
,
2023
, “
Review of Eye Tracking Metrics Involved in Emotional and Cognitive Processes
,”
IEEE Rev. Biomed. Eng.
,
16
, pp.
260
277
.
42.
Granholm
,
E.
,
Asarnow
,
R. F.
,
Sarkin
,
A. J.
, and
Dykes
,
K. L.
,
1996
, “
Pupillary Responses Index Cognitive Resource Limitations
,”
Psychophysiology
,
33
(
4
), pp.
457
461
.
43.
Cabestrero
,
R.
,
Crespo
,
A.
, and
Quirós
,
P.
,
2009
, “
Pupillary Dilation as an Index of Task Demands
,”
Percept. Mot. Skills
,
109
(
3
), pp.
664
678
.
44.
Hess
,
E. H.
, and
Polt
,
J. M.
,
1964
, “
Pupil Size in Relation to Mental Activity During Simple Problem-Solving
,”
Science
,
143
(
3611
), pp.
1190
1192
.
45.
Kahneman
,
D.
, and
Beatty
,
J.
,
1966
, “
Pupil Diameter and Load on Memory
,”
Science
,
154
(
3756
), pp.
1583
1585
.
46.
Van Orden
,
K. F.
,
Limbert
,
W.
,
Makeig
,
S.
, and
Jung
,
T.-P.
,
2001
, “
Eye Activity Correlates of Workload During a Visuospatial Memory Task
,”
Hum. Factors
,
43
(
1
), pp.
111
121
.
47.
Kiefer
,
P.
,
Giannopoulos
,
I.
,
Duchowski
,
A.
, and
Raubal
,
M.
,
2016
, “Measuring Cognitive Load for Map Tasks Through Pupil Diameter,”
Geographic Information Science
,
J.A.
Miller
,
D.
O'Sullivan
, and
N.
Wiegand
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
323
337
.
48.
Palinko
,
O.
, and
Kun
,
A. L.
,
2012
, “
Exploring the Effects of Visual Cognitive Load and Illumination on Pupil Diameter in Driving Simulators
,”
Proceedings of the Symposium on Eye Tracking Research and Applications
,
Santa Barbara, CA
,
Mar. 28–30
, ACM, pp.
413
416
.
49.
Heeman
,
P. A.
,
Meshorer
,
T.
,
Kun
,
A. L.
,
Palinko
,
O.
, and
Medenica
,
Z.
,
2013
, “
Estimating Cognitive Load Using Pupil Diameter During a Spoken Dialogue Task
,”
Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications
,
Eindhoven, The Netherlands
,
Oct. 28–30
, ACM, pp.
242
245
.
50.
Kun
,
A. L.
,
Palinko
,
O.
,
Medenica
,
Z.
, and
Heeman
,
P. A.
,
2013
, “
On the Feasibility of Using Pupil Diameter to Estimate Cognitive Load Changes for In-Vehicle Spoken Dialogues
,”
Interspeech 2013, ISCA
,
Lyon, France
,
Aug. 25–29
, pp.
3766
3770
.
51.
Beatty
,
J.
,
1982
, “
Task-Evoked Pupillary Responses, Processing Load, and the Structure of Processing Resources
,”
Psychol. Bull.
,
91
(
2
), pp.
276
292
.
52.
Hughes
,
J. L.
,
Camden
,
A. A.
,
Yangchen
,
T.
,
Smith
,
G. P. A.
,
Domenech Rodríguez
,
M. M.
,
Rouse
,
S. V.
,
McDonald
,
C. P.
, and
Lopez
,
S.
,
2022
, “
INVITED EDITORIAL: Guidance for Researchers When Using Inclusive Demographic Questions for Surveys: Improved and Updated Questions
,”
PsiChiJournal
,
27
(
4
), pp.
232
255
.
53.
Cash
,
P.
,
Isaksson
,
O.
,
Maier
,
A.
, and
Summers
,
J.
,
2022
, “
Sampling in Design Research: Eight Key Considerations
,”
Des. Stud.
,
78
, p.
101077
.
54.
Ferguson
,
L.
,
2004
, “
External Validity, Generalizability, and Knowledge Utilization
,”
J. Nurs. Scholarship
,
36
(
1
), pp.
16
22
.
55.
Slack
,
M. K.
, and
Draugalis
,
J. R.
,
2001
, “
Establishing the Internal and External Validity of Experimental Studies
,”
Am. J. Health-Syst. Pharm.
,
58
(
22
), pp.
2173
2181
.
56.
Mehta
,
P.
,
Malviya
,
M.
,
McComb
,
C.
,
Manogharan
,
G.
, and
Berdanier
,
C. G. P.
,
2020
, “
Mining Design Heuristics for Additive Manufacturing Via Eye-Tracking Methods and Hidden Markov Modeling
,”
ASME J. Mech. Des.
,
142
(
12
), p.
124502
.
57.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Complex Solutions for Complex Problems? Exploring the Role of Design Task Choice on Learning, Design for Additive Manufacturing Use, and Creativity
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031121
.
58.
Onarheim
,
B.
,
2012
, “
Creativity From Constraints in Engineering Design: Lessons Learned at Coloplast
,”
J. Eng. Des.
,
23
(
4
), pp.
323
336
.
59.
Jia
,
W.
, and
Zeng
,
Y.
,
2021
, “
EEG Signals Respond Differently to Idea Generation, Idea Evolution and Evaluation in a Loosely Controlled Creativity Experiment
,”
Sci. Rep.
,
11
(
1
), p.
2119
.
60.
Prabhu
,
R.
, and
Cass
,
M.
,
2024
, “
Sketch, CAD, or Simulate the Build? Exploring Novice Designers' Design Representation Use in Design for Additive Manufacturing
,”
Int. J. Des. Creat. Innov.
,
12
(
4
), pp.
1
23
.
61.
Hart
,
S. G.
,
2006
, “
NASA-Task Load Index (NASA-TLX); 20 Years Later
,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet.
,
50
(
9
), pp.
904
908
.
62.
Devos
,
H.
,
Gustafson
,
K.
,
Ahmadnezhad
,
P.
,
Liao
,
K.
,
Mahnken
,
J. D.
,
Brooks
,
W. M.
, and
Burns
,
J. M.
,
2020
, “
Psychometric Properties of NASA-TLX and Index of Cognitive Activity as Measures of Cognitive Workload in Older Adults
,”
Brain Sci.
,
10
(
12
), p.
994
.
63.
Ikuma
,
L. H.
,
Nussbaum
,
M. A.
, and
Babski-Reeves
,
K. L.
,
2009
, “
Reliability of Physiological and Subjective Responses to Physical and Psychosocial Exposures During a Simulated Manufacturing Task
,”
Int. J. Ind. Ergon.
,
39
(
5
), pp.
813
820
.
64.
Rubio
,
S.
,
Diaz
,
E.
,
Martin
,
J.
, and
Puente
,
J. M.
,
2004
, “
Evaluation of Subjective Mental Workload: A Comparison of SWAT, NASA-TLX, and Workload Profile Methods
,”
Appl. Psychol.
,
53
(
1
), pp.
61
86
.
65.
Wierwille
,
W. W.
, and
Eggemeier
,
F. T.
,
1993
, “
Recommendations for Mental Workload Measurement in a Test and Evaluation Environment
,”
Hum. Factors
,
35
(
2
), pp.
263
281
.
66.
Alavi
,
M.
,
Visentin
,
D. C.
,
Thapa
,
D. K.
,
Hunt
,
G. E.
,
Watson
,
R.
, and
Cleary
,
M.
,
2020
, “
Exploratory Factor Analysis and Principal Component Analysis in Clinical Studies: Which One Should You Use?
,”
J. Adv. Nurs.
,
76
(
8
), pp.
1886
1889
.
67.
Kaiser
,
H. F.
,
1974
, “
An Index of Factorial Simplicity
,”
Psychometrika
,
39
(
1
), pp.
31
36
.
68.
Tobias
,
S.
, and
Carlson
,
J. E.
,
1969
, “
Brief Report: Bartlett’s Test of Sphericity and Chance Findings in Factor Analysis
,”
Multivar. Behav. Res.
,
4
(
3
), pp.
375
377
.
69.
Cronbach
,
L. J.
,
1951
, “
Coefficient Alpha and the Internal Structure of Tests
,”
Psychometrika
,
16
(
3
), pp.
297
334
.
70.
Thompson
,
J.
,
2022
, “
A Guide to Abductive Thematic Analysis
,”
TQR
,
27
(
5
), pp.
1410
1421
.
71.
Hallgren
,
K. A.
,
2012
, “
Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial
,”
TQMP
,
8
(
1
), pp.
23
34
.
72.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2004
, “
The Situated Function–Behaviour–Structure Framework
,”
Des. Stud.
,
25
(
4
), pp.
373
391
.
73.
Reich
,
Y.
,
2022
, “
We Cannot Play 20 Questions With Creativity and Innovation and Win: The Necessity of Practice-Based Integrative Research
,”
Int. J. Des. Creat. Innov.
,
10
(
2
), pp.
69
74
.
74.
Shapiro
,
S. S.
, and
Wilk
,
M. B.
,
1965
, “
An Analysis of Variance Test for Normality (Complete Samples)
,”
Biometrika
,
52
(
3–4
), p.
22
.
75.
de Winter
,
J. C. F.
,
Gosling
,
S. D.
, and
Potter
,
J.
,
2016
, “
Comparing the Pearson and Spearman Correlation Coefficients Across Distributions and Sample Sizes: A Tutorial Using Simulations and Empirical Data
,”
Psychol. Methods
,
21
(
3
), pp.
273
290
.
76.
Havlicek
,
L. L.
, and
Peterson
,
N. L.
,
1976
, “
Robustness of the Pearson Correlation Against Violations of Assumptions
,”
Percept. Mot. Skills
,
43
(
Suppl. 3
), pp.
1319
1334
.
77.
Wang
,
J.
,
Antonenko
,
P.
,
Keil
,
A.
, and
Dawson
,
K.
,
2020
, “
Converging Subjective and Psychophysiological Measures of Cognitive Load to Study the Effects of Instructor-Present Video
,”
Mind Brain Educ.
,
14
(
3
), pp.
279
291
.
78.
Wu
,
Y.
,
Miwa
,
T.
, and
Uchida
,
M.
,
2017
, “
Using Physiological Signals to Measure Operator’s Mental Workload in Shipping – An Engine Room Simulator Study
,”
J. Mar. Eng. Technol.
,
16
(
2
), pp.
61
69
.
79.
Marquart
,
G.
,
Cabrall
,
C.
, and
De Winter
,
J.
,
2015
, “
Review of Eye-Related Measures of Drivers’ Mental Workload
,”
Procedia Manuf.
,
3
, pp.
2854
2861
.
80.
Vanneste
,
P.
,
Raes
,
A.
,
Morton
,
J.
,
Bombeke
,
K.
,
Van Acker
,
B. B.
,
Larmuseau
,
C.
,
Depaepe
,
F.
, and
Van Den Noortgate
,
W.
,
2021
, “
Towards Measuring Cognitive Load Through Multimodal Physiological Data
,”
Cogn. Technol. Work
,
23
(
3
), pp.
567
585
.
81.
Magezi
,
D. A.
,
2015
, “
Linear Mixed-Effects Models for Within-Participant Psychology Experiments: An Introductory Tutorial and Free, Graphical User Interface (LMMgui)
,”
Front. Psychol.
,
6
, p.
2
.
82.
Hershaw
,
J. N.
, and
Ettenhofer
,
M. L.
,
2018
, “
Insights Into Cognitive Pupillometry: Evaluation of the Utility of Pupillary Metrics for Assessing Cognitive Load in Normative and Clinical Samples
,”
Int. J. Psychophysiol.
,
134
, pp.
62
78
.
83.
Campbell
,
D. T.
, and
Fiske
,
D. W.
,
1959
, “
Convergent and Discriminant Validation by the Multitrait-Multimethod Matrix
,”
Psychol. Bull.
,
56
(
2
), pp.
81
105
.
84.
Lukačević
,
F.
,
Becattini
,
N.
, and
Škec
,
S.
,
2023
, “
EEG-Based Cognitive Load Indicators in CAD Modelling Tasks of Varying Complexity
,”
Proc. Des. Soc.
,
3
, pp.
1545
1554
.
85.
Edwards
,
K. M.
,
Man
,
B.
, and
Ahmed
,
F.
,
2024
, “
Sketch2Prototype: Rapid Conceptual Design Exploration and Prototyping With Generative AI
,”
Proc. Des. Soc.
,
4
, pp.
1989
1998
.
86.
Edwards
,
K. M.
,
Peng
,
A.
,
Miller
,
S. R.
, and
Ahmed
,
F.
,
2022
, “
If a Picture Is Worth 1000 Words, Is a Word Worth 1000 Features for Design Metric Estimation?
,”
ASME J. Mech. Des.
,
144
(
4
), p.
041402
.
87.
Hu
,
M.
,
McComb
,
C.
, and
Goucher-Lambert
,
K.
,
2023
, “
Uncovering Hidden Patterns of Design Ideation Using Hidden Markov Modeling and Neuroimaging
,”
AI EDAM
,
37
, p.
e8
.
88.
Lukačević
,
F.
,
Becattini
,
N.
,
Perišić
,
M. M.
, and
Škec
,
S.
,
2023
, “
Differences in Engineers’ Brain Activity When CAD Modelling From Isometric and Orthographic Projections
,”
Sci. Rep.
,
13
(
1
), p.
9726
.
89.
Binda
,
P.
,
Pereverzeva
,
M.
, and
Murray
,
S. O.
,
2014
, “
Pupil Size Reflects the Focus of Feature-Based Attention
,”
J. Neurophysiol.
,
112
(
12
), pp.
3046
3052
.
90.
Peinkhofer
,
C.
,
Knudsen
,
G. M.
,
Moretti
,
R.
, and
Kondziella
,
D.
,
2019
, “
Cortical Modulation of Pupillary Function: Systematic Review
,”
PeerJ
,
7
, p.
e6882
.
91.
Murphy
,
P. R.
,
Vandekerckhove
,
J.
, and
Nieuwenhuis
,
S.
,
2014
, “
Pupil-Linked Arousal Determines Variability in Perceptual Decision Making
,”
PLoS Comput. Biol.
,
10
(
9
), p.
e1003854
.
92.
Lempert
,
K. M.
,
Chen
,
Y. L.
, and
Fleming
,
S. M.
,
2015
, “
Relating Pupil Dilation and Metacognitive Confidence During Auditory Decision-Making
,”
PLoS One
,
10
(
5
), p.
e0126588
.
93.
Gero
,
J. S.
, and
Milovanovic
,
J.
,
2020
, “
A Framework for Studying Design Thinking Through Measuring Designers' Minds, Bodies and Brains
,”
Des. Sci.
,
6
, p.
e19
.
94.
National Science Foundation
,
2021
,
Women, Minorities, and Persons With Disabilities in Science and Engineering: 2021
,
National Center for Science and Engineering Statistics
,
Alexandria, VA
.
95.
Chen
,
B.
,
Hwang
,
G.-H.
, and
Wang
,
S.-H.
,
2021
, “
Gender Differences in Cognitive Load When Applying Game-Based Learning With Intelligent Robots
,”
Educ. Technol. Soc.
,
24
(
3
), pp.
102
115
.
96.
Atman
,
C. J.
,
Chimka
,
J. R.
,
Bursic
,
K. M.
, and
Nachtmann
,
H. L.
,
1999
, “
A Comparison of Freshman and Senior Engineering Design Processes
,”
Des. Stud.
,
20
(
2
), pp.
131
152
.
97.
Krishnakumar
,
S.
,
Maier
,
T.
,
Berdanier
,
C.
,
Ritter
,
S.
,
McComb
,
C.
, and
Menold
,
J.
,
2022
, “
Using Workplace Thriving Theory to Investigate First-Year Engineering Students’ Abilities to Thrive During the Transition to Online Learning Due to COVID -19
,”
J. Eng. Educ.
,
111
(
2
), pp.
474
493
.
You do not currently have access to this content.