Abstract

Cloaks are devices designed to conceal objects from detection. With the advancement of metamaterials, there is an increasing interest in developing multifunctional cloaks to cater to various application scenarios. This article proposes a level-set-based shape and topology optimization scheme to design simultaneous thermal and electrical cloaking devices. Unlike classical methods such as coordinate transformation and scattering cancelation, which are vulnerable to high material anisotropy, the proposed method employs only naturally occurring bulk materials, greatly facilitating physical realization. The bifunctional cloak is achieved by reproducing the reference temperature and electrical potential fields within the evaluation domain through the optimal layout of two thermally and electrically conductive materials. Using a similar formulation, we extend the proposed method to design a thermal–electrical camouflage device that can conceal a sensor while allowing it to remain functional. This study presents a method to simultaneously achieve sensing and camouflaging in multiphysical fields using topology optimization. Previous research has generally addressed these functionalities separately; in contrast, we integrate them into a unified framework. To demonstrate the method’s potential, we provide examples of bifunctional cloaks and camouflage devices. The dependency of the optimization results on the initial designs is also briefly investigated. Despite exhibiting a notable reliance on the initial guesses, as with any gradient-based method, the objective functions based on the least-square error are sufficiently small, demonstrating the effectiveness of the cloak. This study holds promise for inspiring further exploration of metadevices with multiple functionalities.

References

1.
Pendry
,
J. B.
,
Schurig
,
D.
, and
Smith
,
D. R.
,
2006
, “
Controlling Electromagnetic Fields
,”
Science
,
312
(
5781
), pp.
1780
1782
.
2.
Leonhardt
,
U.
,
2006
, “
Optical Conformal Mapping
,”
Science
,
312
(
5781
), pp.
1777
1780
.
3.
Fujii
,
G.
,
Akimoto
,
Y.
, and
Takahashi
,
M.
,
2018
, “
Exploring Optimal Topology of Thermal Cloaks by CMA-ES
,”
Appl. Phys. Lett.
,
112
(
6
), p.
061108
.
4.
Xu
,
H.
,
Shi
,
X.
,
Gao
,
F.
,
Sun
,
H.
, and
Zhang
,
B.
,
2014
, “
Ultrathin Three-Dimensional Thermal Cloak
,”
Phys. Rev. Lett.
,
112
(
5
), p.
054301
.
5.
Han
,
T.
,
Ye
,
H.
,
Luo
,
Y.
,
Yeo
,
S. P.
,
Teng
,
J.
,
Zhang
,
S.
, and
Qiu
,
C.-W.
,
2014
, “
Manipulating DC Currents with Bilayer Bulk Natural Materials
,”
Adv. Mater.
,
26
(
21
), pp.
3478
3483
.
6.
Chen
,
H.
, and
Chan
,
C. T.
,
2007
, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
(
18
), p.
183518
.
7.
Wang
,
L.
,
Boddapati
,
J.
,
Liu
,
K.
,
Zhu
,
P.
,
Daraio
,
C.
, and
Chen
,
W.
,
2022
, “
Mechanical Cloak Via Data-Driven Aperiodic Metamaterial Design
,”
Proc. Natl. Acad. Sci. USA
,
119
(
13
), p.
e2122185119
.
8.
Dede
,
E. M.
,
Nomura
,
T.
, and
Lee
,
J.
,
2014
, “
Thermal-Composite Design Optimization for Heat Flux Shielding, Focusing, and Reversal
,”
Struct. Multidiscipl. Optim.
,
49
(
1
), pp.
59
68
.
9.
Alù
,
A.
, and
Engheta
,
N.
,
2009
, “
Cloaking a Sensor
,”
Phys. Rev. Lett.
,
102
(
23
), p.
233901
.
10.
Fan
,
C.
,
Gao
,
Y.
, and
Huang
,
J.
,
2008
, “
Shaped Graded Materials With an Apparent Negative Thermal Conductivity
,”
Appl. Phys. Lett.
,
92
(
25
), p.
251907
.
11.
Wang
,
J.
,
Dai
,
G.
, and
Huang
,
J.
,
2020
, “
Thermal Metamaterial: Fundamental, Application, and Outlook
,”
Iscience
,
23
(
10
), p.
101637
.
12.
Han
,
T.
,
Bai
,
X.
,
Gao
,
D.
,
Thong
,
J. T.
,
Li
,
B.
, and
Qiu
,
C.-W.
,
2014
, “
Experimental Demonstration of a Bilayer Thermal Cloak
,”
Phys. Rev. Lett.
,
112
(
5
), p.
054302
.
13.
Narayana
,
S.
, and
Sato
,
Y.
,
2012
, “
Heat Flux Manipulation With Engineered Thermal Materials
,”
Phys. Rev. Lett.
,
108
(
21
), p.
214303
.
14.
Imran
,
M.
,
Zhang
,
L.
, and
Gain
,
A. K.
,
2020
, “
Advanced Thermal Metamaterial Design for Temperature Control at the Cloaked Region
,”
Sci. Rep.
,
10
(
1
), pp.
1
11
.
15.
Ahsan
,
M.
, and
Sun
,
F.
,
2023
, “
A Thermal-Electric Cloak Via Nonlinear Transformation
,”
IEEE Photonics J.
.
16
(
6
), pp.
1
6
.
16.
Lan
,
C.
,
Bi
,
K.
,
Fu
,
X.
,
Li
,
B.
, and
Zhou
,
J.
,
2016
, “
Bifunctional Metamaterials With Simultaneous and Independent Manipulation of Thermal and Electric Fields
,”
Opt. Express
,
24
(
20
), pp.
23072
23080
.
17.
Dede
,
E. M.
,
Nomura
,
T.
,
Schmalenberg
,
P.
, and
Seung Lee
,
J.
,
2013
, “
Heat Flux Cloaking, Focusing, and Reversal in Ultra-thin Composites Considering Conduction-Convection Effects
,”
Appl. Phys. Lett.
,
103
(
6
), p.
063501
.
18.
Vemuri
,
K. P.
,
Canbazoglu
,
F.
, and
Bandaru
,
P. R.
,
2014
, “
Guiding Conductive Heat Flux Through Thermal Metamaterials
,”
Appl. Phys. Lett.
,
105
(
19
), p.
193904
.
19.
Xiang Jiang
,
W.
,
Yang Luo
,
C.
,
Lei Mei
,
Z.
, and
Jun Cui
,
T.
,
2013
, “
An Ultrathin But Nearly Perfect Direct Current Electric Cloak
,”
Appl. Phys. Lett.
,
102
(
1
), p.
014102
.
20.
Shen
,
X.
,
Li
,
Y.
,
Jiang
,
C.
,
Ni
,
Y.
, and
Huang
,
J.
,
2016
, “
Thermal Cloak-Concentrator
,”
Appl. Phys. Lett.
,
109
(
3
), p.
031907
.
21.
Schittny
,
R.
,
Kadic
,
M.
,
Guenneau
,
S.
, and
Wegener
,
M.
,
2013
, “
Experiments on Transformation Thermodynamics: Molding the Flow of Heat
,”
Phys. Rev. Lett.
,
110
(
19
), p.
195901
.
22.
Yang
,
F.
,
Mei
,
Z. L.
,
Jin
,
T. Y.
, and
Cui
,
T. J.
,
2012
, “
DC Electric Invisibility Cloak
,”
Phys. Rev. Lett.
,
109
(
5
), p.
053902
.
23.
Ma
,
Y.
,
Liu
,
Y.
,
Raza
,
M.
,
Wang
,
Y.
, and
He
,
S.
,
2014
, “
Experimental Demonstration of a Multiphysics Cloak: Manipulating Heat Flux and Electric Current Simultaneously
,”
Phys. Rev. Lett.
,
113
(
20
), p.
205501
.
24.
Martinez
,
F.
, and
Maldovan
,
M.
,
2022
, “
Metamaterials: Optical, Acoustic, Elastic, Heat, Mass, Electric, Magnetic, and Hydrodynamic Cloaking
,”
Mater. Today Phys.
,
27
, p.
100819
.
25.
Moccia
,
M.
,
Castaldi
,
G.
,
Savo
,
S.
,
Sato
,
Y.
, and
Galdi
,
V.
,
2014
, “
Independent Manipulation of Heat and Electrical Current Via Bifunctional Metamaterials
,”
Phys. Rev. X
,
4
(
2
), p.
021025
.
26.
Li
,
J.
,
Gao
,
Y.
, and
Huang
,
J.
,
2010
, “
A Bifunctional Cloak Using Transformation Media
,”
J. Appl. Phys.
,
108
(
7
), p.
074504
.
27.
Zhang
,
X.
,
He
,
X.
, and
Wu
,
L.
,
2021
, “
A Bilayer Thermal-Electric Camouflage Device Suitable for a Wide Range of Natural Materials
,”
Compos. Struct.
,
261
, p.
113319
.
28.
Zhang
,
L.
, and
Shi
,
Y.
,
2018
, “
Bifunctional Arbitrarily-Shaped Cloak for Thermal and Electric Manipulations
,”
Opt. Mater. Express
,
8
(
9
), pp.
2600
2613
.
29.
Stedman
,
T.
, and
Woods
,
L. M.
,
2017
, “
Cloaking of Thermoelectric Transport
,”
Sci. Rep.
,
7
(
1
), p.
6988
.
30.
Yang
,
Y.
,
Wang
,
H.
,
Yu
,
F.
,
Xu
,
Z.
, and
Chen
,
H.
,
2016
, “
A Metasurface Carpet Cloak for Electromagnetic, Acoustic and Water Waves
,”
Sci. Rep.
,
6
(
1
), pp.
1
6
.
31.
Han
,
T.
, and
Qiu
,
C.-W.
,
2016
, “
Transformation Laplacian Metamaterials: Recent Advances in Manipulating Thermal and DC Fields
,”
J. Opt.
,
18
(
4
), p.
044003
.
32.
Berridge
,
C.
,
Turner
,
N. R.
,
Liu
,
L.
,
Karras
,
S. W.
,
Chen
,
A.
,
Fredriksen-Goldsen
,
K.
, and
Demiris
,
G.
,
2022
, “
Advance Planning for Technology use in Dementia Care: Development, Design, and Feasibility of a Novel Self-Administered Decision-Making Tool
,”
JMIR Aging
,
5
(
3
), p.
e39335
.
33.
Berridge
,
C.
,
Turner
,
N. R.
,
Liu
,
L.
,
Fredriksen-Goldsen
,
K. I.
,
Lyons
,
K. S.
,
Demiris
,
G.
,
Kaye
,
J.
, and
Lober
,
W. B.
,
2023
, “
Preliminary Efficacy of let’s talk Tech: Technology use Planning for Dementia Care Dyads
,”
Innov. Aging
,
7
(
3
), p.
igad018
.
34.
Collier
,
Z. K.
,
Zhang
,
H.
, and
Liu
,
L.
,
2022
, “
Explained: Artificial Intelligence for Propensity Score Estimation in Multilevel Educational Settings
,”
Pract. Assess. Res. Eval.
,
27
, p.
3
.
35.
Liu
,
L.
,
Joseph
,
G. E.
,
Taylor
,
J. M.
,
Hassairi
,
N.
, and
Soderberg
,
J. S.
,
2023
, “
Early Childhood Educators Pay Equity: A Dream Deferred
,”
Early Child. Educ. J.
, pp.
1
14
.
36.
,
C.
,
Pace
,
A. E.
, and
Liu
,
L.
,
2023
, “Student-Level Variables and Academic Achievement in a Mandarin Dual Language Immersion Program,”
Crossing Boundaries in Researching, Understanding, and Improving Language Education: Essays in Honor of G. Richard Tucker
, Vol.
58
,
Springer
,
Switzerland
, pp.
213
229
.
37.
Liu
,
L.
,
2024
,
Informative Variance Priors for Bayesian Multilevel Models, University of Washington
.
38.
Peralta
,
I.
,
Fachinotti
,
V. D.
, and
Ciarbonetti
,
Á. A.
,
2017
, “
Optimization-Based Design of a Heat Flux Concentrator
,”
Sci. Rep.
,
7
(
1
), pp.
1
8
.
39.
Peralta
,
I.
, and
Fachinotti
,
V. D.
,
2017
, “
Optimization-Based Design of Heat Flux Manipulation Devices With Emphasis on Fabricability
,”
Sci. Rep.
,
7
(
1
), pp.
1
8
.
40.
Fujii
,
G.
, and
Akimoto
,
Y.
,
2020
, “
Cloaking a Concentrator in Thermal Conduction Via Topology Optimization
,”
Int. J. Heat Mass Transfer
,
159
, p.
120082
.
41.
Fujii
,
G.
, and
Akimoto
,
Y.
,
2019
, “
Optimizing the Structural Topology of Bifunctional Invisible Cloak Manipulating Heat Flux and Direct Current
,”
Appl. Phys. Lett.
,
115
(
17
), p.
174101
.
42.
Xu
,
X.
, and
Chen
,
S.
,
2022
, “
Level-Set-Based Shape & Topology Optimization of Thermal Cloaks
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
43.
Xu
,
X.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2023
, “
Topology Optimization of Thermal Cloaks in Euclidean Spaces and Manifolds Using an Extended Level Set Method
,”
Int. J. Heat Mass Transfer
,
202
, p.
123720
.
44.
Seo
,
M.
,
Park
,
H.
, and
Min
,
S.
,
2020
, “
Heat Flux Manipulation by Using a Single-Variable Formulated Multi-Scale Topology Optimization Method
,”
Int. Commun. Heat Mass Transfer
,
118
, p.
104873
.
45.
Sha
,
W.
,
Zhao
,
Y.
,
Gao
,
L.
,
Xiao
,
M.
, and
Hu
,
R.
,
2020
, “
Illusion Thermotics With Topology Optimization
,”
J. Appl. Phys.
,
128
(
4
), p.
045106
.
46.
Sha
,
W.
,
Xiao
,
M.
,
Zhang
,
J.
,
Ren
,
X.
,
Zhu
,
Z.
,
Zhang
,
Y.
,
Xu
,
G.
, et al.,
2021
, “
Robustly Printable Freeform Thermal Metamaterials
,”
Nat. Commun.
,
12
(
1
), pp.
1
8
.
47.
Zhu
,
Z.
,
Wang
,
Z.
,
Liu
,
T.
,
Xie
,
B.
,
Luo
,
X.
,
Choi
,
W.
, and
Hu
,
R.
,
2024
, “
Arbitrary-Shape Transformation Multiphysics Cloak by Topology Optimization
,”
Int. J. Heat Mass Transfer
,
222
, p.
125205
.
48.
Da
,
D.
, and
Chen
,
W.
,
2024
, “
Two-Scale Data-Driven Design for Heat Manipulation
,”
Int. J. Heat Mass Transfer
,
219
, p.
124823
.
49.
Wang
,
Y.
,
Sha
,
W.
,
Xiao
,
M.
,
Qiu
,
C.-W.
, and
Gao
,
L.
,
2023
, “
Deep-Learning-Enabled Intelligent Design of Thermal Metamaterials
,”
Adv. Mater.
,
35
(
33
), p.
2302387
.
50.
Saeidi-Javash
,
M.
,
Wang
,
K.
,
Zeng
,
M.
,
Luo
,
T.
,
Dowling
,
A. W.
, and
Zhang
,
Y.
,
2022
, “
Machine Learning-Assisted Ultrafast Flash Sintering of High-Performance and Flexible Silver–Selenide Thermoelectric Devices
,”
Energy Environ. Sci.
,
15
(
12
), pp.
5093
5104
.
51.
Shang
,
W.
,
Zeng
,
M.
,
Tanvir
,
A.
,
Wang
,
K.
,
Saeidi-Javash
,
M.
,
Dowling
,
A.
,
Luo
,
T.
, and
Zhang
,
Y.
,
2023
, “
Hybrid Data-Driven Discovery of High-Performance Silver Selenide-Based Thermoelectric Composites
,”
Adv. Mater.
,
35
(
47
), p.
2212230
.
52.
Dong
,
P.
,
Song
,
Y.
,
Yu
,
S.
,
Zhang
,
Z.
,
Mallipattu
,
S. K.
,
Djurić
,
P. M.
, and
Yao
,
S.
,
2023
, “
Electromyogram-Based Lip-Reading Via Unobtrusive Dry Electrodes and Machine Learning Methods
,”
Small
,
19
(
17
), p.
2205058
.
53.
Dong
,
P.
,
Li
,
Y.
,
Chen
,
S.
,
Grafstein
,
J. T.
,
Khan
,
I.
, and
Yao
,
S.
,
2023
, “
Decoding Silent Speech Commands From Articulatory Movements Through Soft Magnetic Skin and Machine Learning
,”
Mater. Horiz.
,
10
(
12
), pp.
5607
5620
.
54.
Yin
,
Y.
,
Tran
,
M.
,
Chang
,
D.
,
Wang
,
X.
, and
Soleymani
,
M.
,
2023
, “Multi-Modal Facial Action Unit Detection With Large Pre-trained Models for the 5th Competition on Affective Behavior Analysis In-The-Wild,” preprint arXiv:2303.10590.
55.
Wang
,
X.
, and
Jin
,
Y.
,
2024
, “
Exploring Causal World: Enhancing Robotic Manipulation via Knowledge Transfer and Curriculum Learning
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
88360
, p.
V03AT03A013
.
56.
Xu
,
X.
, and
Chen
,
S.
,
2024
, “
Simultaneous Thermal and Electrical Cloaking Via Level-Set-Based Topology Optimization With Isotropic Materials
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 25–28
.
57.
Xu
,
X.
,
Wu
,
Y.
,
Zuo
,
L.
, and
Chen
,
S.
,
2021
, “
Topology Optimization of Multimaterial Thermoelectric Structures
,”
J. Mech. Des.
,
143
(
1
), p.
011705
.
58.
Zentgraf
,
T.
,
Valentine
,
J.
,
Tapia
,
N.
,
Li
,
J.
, and
Zhang
,
X.
,
2010
, “
An Optical “Janus” Device for Integrated Photonics
,”
Adv. Mater.
,
22
(
23
), pp.
2561
2564
.
59.
Sethian
,
J. A.
, and
Wiegmann
,
A.
,
2000
, “
Structural Boundary Design Via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
,
163
(
2
), pp.
489
528
.
60.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
61.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
62.
Osher
,
S.
,
Fedkiw
,
R.
, and
Piechor
,
K.
,
2004
, “
Level Set Methods and Dynamic Implicit Surfaces
,”
ASME Appl. Mech. Rev.
,
57
(
3
), pp.
B15
B15
.
63.
Choi
,
K. K.
, and
Kim
,
N.-H.
,
2004
,
Structural Sensitivity Analysis and Optimization 1: Linear Systems
,
Springer Science & Business Media
.
64.
Allaire
,
G.
,
2015
, “
A Review of Adjoint Methods for Sensitivity Analysis, Uncertainty Quantification and Optimization in Numerical Codes
,”
Ingénieurs de l’Automobile
,
836
, pp.
33
36
. hal-01242950
65.
Yang
,
T.-Z.
,
Bai
,
X.
,
Gao
,
D.
,
Wu
,
L.
,
Li
,
B.
,
Thong
,
J. T.
, and
Qiu
,
C.-W.
,
2015
, “
Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields
,”
Adv. Mater.
,
27
(
47
), pp.
7752
7758
.
66.
Vogiatzis
,
P.
,
Chen
,
S.
,
Wang
,
X.
,
Li
,
T.
, and
Wang
,
L.
,
2017
, “
Topology Optimization of Multi-material Negative Poisson’s Ratio Metamaterials Using a Reconciled Level Set Method
,”
Comput.-Aided Des.
,
83
, pp.
15
32
.
67.
Ye
,
Q.
,
Guo
,
Y.
,
Chen
,
S.
,
Lei
,
N.
, and
Gu
,
X. D.
,
2019
, “
Topology Optimization of Conformal Structures on Manifolds Using Extended Level Set Methods (X-LSM) and Conformal Geometry Theory
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
164
185
.
68.
Xu
,
X.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2022
, “
Shape and Topology Optimization of Conformal Thermal Control Structures on Free-Form Surfaces: A Dimension Reduction Level Set Method (DR-LSM)
,”
Comput. Methods Appl. Mech. Eng.
,
398
, p.
115183
.
You do not currently have access to this content.