Abstract

In the product conceptual design, designers utilize multiple design representations to ideate, externalize, and refine concepts iteratively. Mixed representations, defined as the simultaneous presentation of multiple representations, foster deeper insights and facilitate broader exploration compared to focusing on a single representation. However, designers often struggle with the cumbersome process of creating, transforming, and refining these representations. Advanced artificial intelligence (AI) capabilities now significantly lower the barriers to creating text, images, and 3D models, presenting substantial potential for application in design practice. However, the current design tools based on generative AI tend to produce polished product images directly, hindering designers from continuously deliberating on mixed representations and thus limiting their creative potential. Therefore, on the basis of a formative study, we propose StepIdeator, a step-by-step design tool driven by generative AI. This tool facilitates seamless transition and refinement of mixed-design representations. Through a comparative study (N = 16), we validated StepIdeator's effectiveness in improving idea externalization and enhancing creativity. Furthermore, the results revealed that designers perceived greater confidence, ownership, and sense of contribution when collaborating with StepIdeator.

References

1.
Pei
,
E.
, and
Self
,
J. A.
,
2022
,
Product Design and the Role of Representation: Foundations for Design Thinking in Practice
,
CRC Press
,
Boca Raton, FL
.
2.
Schön
,
D. A.
,
2017
,
The Reflective Practitioner: How Professionals Think in Action
,
Routledge
,
London
.
3.
Buxton
,
B.
,
2007
,
Sketching User Experiences: Getting the Design Right and the Right Design
,
Morgan Kaufmann Publishers Inc.
,
San Francisco, CA
.
4.
Pei
,
E.
,
Campbell
,
I.
, and
Evans
,
M.
,
2011
, “
A Taxonomic Classification of Visual Design Representations Used by Industrial Designers and Engineering Designers
,”
Des. J.
,
14
(
1
), pp.
64
91
.
5.
Eriksson
,
S.
,
Wallgren
,
P.
, and
Karlsson
,
M.
,
2023
, “
Re-Thinking Design Representations in Design Education: An Interview Study With Professional Designers
,”
Proc. Des. Soc.
,
3
, pp.
3095
3104
.
6.
Krishnakumar
,
S.
,
Letting
,
C.
,
Soria Zurita
,
N. F.
, and
Menold
,
J.
,
2024
, “
If You Build It, Will They Understand? Considerations for Creating Shared Understanding Through Design Artifacts
,”
ASME J. Mech. Des.
,
146
(
3
), p.
031404
.
7.
Suwa
,
M.
,
Gero
,
J. S.
, and
Purcell
,
T. A.
,
2022
, “
The Roles of Sketches in Early Conceptual Design Processes
,”
Proceedings of the Twentieth Annual Conference of the Cognitive Science Society
,
Routledge
,
New York
.
8.
Menezes
,
A.
, and
Lawson
,
B.
,
2006
, “
How Designers Perceive Sketches
,”
Des. Stud.
,
27
(
5
), pp.
571
585
.
9.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2016
,
Product Design and Development
,
McGraw-Hill
,
New York
.
10.
Atit Shah
,
J.
,
Lim
,
I.
,
Molina-Cristobal
,
A.
,
ChristianDale
,
V.
, and
Mei
,
F.
,
2021
, “
Learner's Experience About Freehand Sketching vs CAD for Concept Ideation Process During Product Design Development
,”
2021 IEEE International Conference on Engineering, Technology & Education (TALE)
,
Wuhan, China
,
Dec. 5–8
, IEEE, pp.
188
195
.
11.
Huić
,
I.
,
Horvat
,
N.
, and
Škec
,
S.
,
2023
, “
Design Sprint: Use of Design Methods and Technologies
,”
Proc. Des. Soc.
,
3
, pp.
1317
1326
.
12.
Shih
,
Y. T.
,
Sher
,
W. D.
, and
Taylor
,
M.
,
2017
, “
Using Suitable Design Media Appropriately: Understanding How Designers Interact With Sketching and CAD Modelling in Design Processes
,”
Des. Stud.
,
53
, pp.
47
77
.
13.
Li
,
X.
,
Wang
,
Y.
, and
Sha
,
Z.
,
2023
, “
Deep Learning Methods of Cross-Modal Tasks for Conceptual Design of Product Shapes: A Review
,”
ASME J. Mech. Des.
,
145
(
4
), p.
041401
.
14.
Demirel
,
H. O.
,
Goldstein
,
M. H.
,
Li
,
X.
, and
Sha
,
Z.
,
2024
, “
Human-Centered Generative Design Framework: An Early Design Framework to Support Concept Creation and Evaluation
,”
Int. J. Hum. Comput. Stud.
,
40
(
4
), pp.
933
944
.
15.
Pourreza
,
R.
,
Bhattacharyya
,
A.
,
Panchal
,
S.
,
Lee
,
M.
,
Madan
,
P.
, and
Memisevic
,
R.
,
2023
, “
Painter: Teaching Auto-Regressive Language Models to Draw Sketches
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Paris, France
,
Oct. 4–6
, pp.
305
314
.
16.
Voynov
,
A.
,
Aberman
,
K.
, and
Cohen-Or
,
D.
,
2023
, “
Sketch-Guided Text-to-Image Diffusion Models
,”
ACM SIGGRAPH 2023 Conference Proceedings
,
Los Angeles, CA
,
Aug. 6–10
, pp.
1
11
.
17.
Chen
,
Y.
,
Pan
,
Y.
,
Li
,
Y.
,
Yao
,
T.
, and
Mei
,
T.
,
2023
, “
Control3d: Towards Controllable Text-to-3D Generation
,”
Proceedings of the 31st ACM International Conference on Multimedia
,
Ottawa, Canada
,
Oct. 29
, pp.
1148
1156
.
18.
Edwards
,
K. M.
,
Man
,
B.
, and
Ahmed
,
F.
,
2024
, “
Sketch2Prototype: Rapid Conceptual Design Exploration and Prototyping With Generative AI
,”
Proc. Des. Soc.
,
4
, pp.
1989
1998
.
19.
Mountstephens
,
J.
, and
Teo
,
J.
,
2020
, “
Progress and Challenges in Generative Product Design: A Review of Systems
,”
Computers
,
9
(
4
), pp.
80
103
.
20.
Shi
,
Y.
,
Gao
,
T.
,
Jiao
,
X.
, and
Cao
,
N.
,
2023
, “
Understanding Design Collaboration Between Designers and Artificial Intelligence: A Systematic Literature Review
,”
Proc. ACM Hum.-Comput. Interact.
,
7
(
CSCW2
), pp.
1
35
.
21.
Han
,
Z.
,
Shang
,
M.
,
Wang
,
X.
,
Liu
,
Y.-S.
, and
Zwicker
,
M.
,
2019
, “
Y2Seq2Seq: Cross-Modal Representation Learning for 3D Shape and Text by Joint Reconstruction and Prediction of View and Word Sequences
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
Vancouver, Canada
,
Feb. 20–27
, pp.
126
133
.
22.
Qi
,
A.
,
Gryaditskaya
,
Y.
,
Song
,
J.
,
Yang
,
Y.
,
Qi
,
Y.
,
Hospedales
,
T. M.
,
Xiang
,
T.
, and
Song
,
Y.-Z.
,
2021
, “
Toward Fine-Grained Sketch-Based 3D Shape Retrieval
,”
IEEE Trans. Image Process.
,
30
, pp.
8595
8606
.
23.
Yang
,
H.
,
Tian
,
Y.
,
Yang
,
C.
,
Wang
,
Z.
,
Wang
,
L.
, and
Li
,
H.
,
2022
, “
Sequential Learning for SketchBased 3D Model Retrieval
,”
Multimed. Syst.
,
28
(
3
), pp.
1
18
.
24.
Chen
,
T.
,
Ding
,
C.
,
Zhu
,
L.
,
Zang
,
Y.
,
Liao
,
Y.
,
Li
,
Z.
, and
Sun
,
L.
,
2023
, “
Reality3DSketch: Rapid 3D Modeling of Objects From Single Freehand Sketches
,”
IEEE Trans. Multimedia
,
26
, pp.
4859
4870
.
25.
Jain
,
A.
,
Mildenhall
,
B.
,
Barron
,
J. T.
,
Abbeel
,
P.
, and
Poole
,
B.
,
2022
, “
Zero-Shot Text-Guided Object Generation With Dream Fields
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 21–24
, pp.
867
876
.
26.
Sanghi
,
A.
,
Chu
,
H.
,
Lambourne
,
J. G.
,
Wang
,
Y.
,
Cheng
,
C.-Y.
,
Fumero
,
M.
, and
Malekshan
,
K. R.
,
2022
, “
Clip-Forge: Towards Zero-Shot Text-to-Shape Generation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 21–24
, pp.
18603
18613
.
27.
Guillard
,
B.
,
Remelli
,
E.
,
Yvernay
,
P.
, and
Fua
,
P.
,
2021
, “
Sketch2mesh: Reconstructing and Editing 3D Shapes From Sketches
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Virtual
,
Oct. 11–17
, pp.
13023
13032
.
28.
Cross
,
N.
,
2004
, “
Expertise in Design: An Overview
,”
Des. Stud.
,
25
(
5
), pp.
427
441
.
29.
Dow
,
S. P.
,
Glassco
,
A.
,
Kass
,
J.
,
Schwarz
,
M.
,
Schwartz
,
D. L.
, and
Klemmer
,
S. R.
,
2010
, “
Parallel Prototyping Leads to Better Design Results, More Divergence, and Increased Self-Efficacy
,”
ACM Trans. Comput.-Hum. Interact.
,
17
(
4
), pp.
1
24
.
30.
Jansson
,
D. G.
, and
Smith
,
S. M.
,
1991
, “
Design Fixation
,”
Des. Stud.
,
12
(
1
), pp.
3
11
.
31.
Otto
,
K. N.
,
2003
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Tsinghua University Press
,
Beijing
.
32.
Hsiao
,
S.-W.
, and
Chou
,
J.-R.
,
2004
, “
A Creativity-Based Design Process for Innovative Product Design
,”
Int. J. Ind. Ergon.
,
34
(
5
), pp.
421
443
.
33.
Reid
,
T. N.
,
MacDonald
,
E. F.
, and
Du
,
P.
,
2013
, “
Impact of Product Design Representation on Customer Judgment
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091008
.
34.
Yang
,
M. C.
,
2009
, “
Observations on Concept Generation and Sketching in Engineering Design
,”
Res. Eng. Des.
,
20
(
1
), pp.
1
11
.
35.
Chiarello
,
F.
,
Belingheri
,
P.
, and
Fantoni
,
G.
,
2021
, “
Data Science for Engineering Design: State of the Art and Future Directions
,”
Comput. Ind.
,
129
, pp.
1
17
.
36.
Schenk
,
P.
,
2007
, “
Developing a Taxonomy on Drawing for Design
,”
International Association of Societies of Design Research
,
Hong Kong
,
Nov. 12–15
, pp.
1
15
.
37.
Phillips
,
P. L.
,
2004
,
Creating the Perfect Design Brief: How to Manage Design for Strategic Advantage
,
Skyhorse Publishing Inc.
,
New York
.
38.
Holmquist
,
L. E.
,
2005
, “
Prototyping: Generating Ideas or Cargo Cult Designs?
,”
Interactions
,
12
(
2
), pp.
48
54
.
39.
Cross
,
N.
,
2023
,
Engineering Design Methods: Strategies for Product Design
,
John Wiley & Sons
,
Hoboken, NJ
.
40.
Milton
,
A.
, and
Rodgers
,
P.
,
2023
,
Research Methods for Product Design
,
Hachette UK
,
London
.
41.
Wiltschnig
,
S.
,
Christensen
,
B. T.
, and
Ball
,
L. J.
,
2013
, “
Collaborative Problem–Solution Co-Evolution in Creative Design
,”
Des. Stud.
,
34
(
5
), pp.
515
542
.
42.
Visser
,
W.
,
2006
,
The Cognitive Artifacts of Designing
,
CRC Press
,
Boca Raton, FL
.
43.
Sarica
,
S.
,
Han
,
J.
, and
Luo
,
J.
,
2023
, “
Design Representation as Semantic Networks
,”
Comput. Ind.
,
144
, pp.
103791
.
44.
Fleury
,
S.
,
Poussard
,
B.
,
Blanchard
,
P.
,
Dupont
,
L.
,
Broekema
,
P. M.
, and
Richir
,
S.
,
2022
, “
Innovative Process for Furniture Design: Contributions of 3D Scan and Virtual Reality
,”
Comput.-Aided Des. Appl.
,
19
(
5
), pp.
868
878
.
45.
Zhang
,
W.
,
Ranscombe
,
C.
,
Piumsomboon
,
T.
, and
Mallya
,
P.
,
2023
, “
What Determines VR Integration in Design Practice? An Investigation of Industrial Designer's Acceptance of VR Visualisation Tools
,”
Proc. Des. Soc.
,
3
, pp.
3861
3870
.
46.
Kuo
,
W.
,
Angelova
,
A.
,
Lin
,
T.-Y.
, and
Dai
,
A.
,
2020
, “
Mask2cad: 3D Shape Prediction by Learning to Segment and Retrieve
,”
Computer Vision–ECCV 2020: 16th European Conference
,
Glasgow, UK
,
Aug. 23–28
, Proceedings, Part III 16,
Springer
, pp.
260
277
.
47.
Giunchi
,
D.
,
Sztrajman
,
A.
,
James
,
S.
, and
Steed
,
A.
,
2021
, “
Mixing Modalities of 3D Sketching and Speech for Interactive Model Retrieval in Virtual Reality
,”
Proceedings of the 2021 ACM International Conference on Interactive Media Experiences, Association for Computing Machinery
,
New York, NY
,
June 21–23
, pp.
144
155
.
48.
Stemasov
,
E.
,
Wagner
,
T.
,
Gugenheimer
,
J.
, and
Rukzio
,
E.
,
2022
, “
ShapeFindAR: Exploring In-Situ Spatial Search for Physical Artifact Retrieval Using Mixed Reality
,”
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
,
New Orleans, LA
,
Apr. 29–May 5
, pp.
1
12
.
49.
Wang
,
C.
,
Chai
,
M.
,
He
,
M.
,
Chen
,
D.
, and
Liao
,
J.
,
2022
, “
Clip-Nerf: Text-and-Image Driven Manipulation of Neural Radiance Fields
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 21–24
, pp.
3835
3844
.
50.
Maurya
,
S.
,
Mougenot
,
C.
, and
Takeda
,
Y.
,
2021
, “
Impact of Mixed Reality Implementation on Early-Stage Interactive Product Design Process
,”
J. Eng. Des.
,
32
(
1
), pp.
1
27
.
51.
Feuerriegel
,
S.
,
Hartmann
,
J.
,
Janiesch
,
C.
, and
Zschech
,
P.
,
2024
, “
Generative AI
,”
Bus. Inf. Syst. Eng.
,
66
(
1
), pp.
111
126
.
52.
Chung
,
J. J. Y.
, and
Adar
,
E.
,
2023
, “
PromptPaint: Steering Text-to-Image Generation Through Paint Medium-Like Interactions
,”
Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology
,
San Francisco, CA
,
Oct. 29–Nov. 1
, pp.
1
17
.
53.
Li
,
T.-T.
, and
Zhao
,
D.-H.
,
2021
, “
Mood Board Tool on High-Level Semantics Visual Representation to Favor Creative Design
,”
Advances in Ergonomics in Design: Proceedings of the AHFE 2021 Virtual Conference on Ergonomics in Design
,
July 25–29
,
Springer
, pp.
408
419
.
54.
Wu
,
D.
,
Yu
,
Z.
,
Ma
,
N.
,
Jiang
,
J.
,
Wang
,
Y.
,
Zhou
,
G.
,
Deng
,
H.
, and
Li
,
Y.
,
2023
, “
StyleMe: Towards Intelligent Fashion Generation With Designer Style
,”
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
,
Hamburg, Germany
,
Apr. 23–28
, pp.
1
16
.
55.
Chen
,
Y.-H.
,
Kara
,
L. B.
, and
Cagan
,
J.
,
2023
, “
Automating Style Analysis and Visualization With Explainable AI—Case Studies on Brand Recognition
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
.
56.
Li
,
X.
,
Xie
,
C.
, and
Sha
,
Z.
,
2022
, “
A Predictive and Generative Design Approach for Three-Dimensional Mesh Shapes Using Target-Embedding Variational Autoencoder
,”
ASME J. Mech. Des.
,
144
(
11
), pp.
114501
.
57.
Wang
,
S.
,
Petridis
,
S.
,
Kwon
,
T.
,
Ma
,
X.
, and
Chilton
,
L. B.
,
2023
, “
PopBlends: Strategies for Conceptual Blending With Large Language Models
,”
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
,
Hamburg, Germany
,
Apr. 23–28
, pp.
1
19
.
58.
Mozaffari
,
M. A.
,
Zhang
,
X.
,
Cheng
,
J.
, and
Guo
,
J. L.
,
2022
, “
GANSpiration: Balancing Targeted and Serendipitous Inspiration in User Interface Design With Style-Based Generative Adversarial Network
,”
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
,
New Orleans, LA
,
Apr. 29–May 5
, pp.
1
15
.
59.
Koch
,
J.
,
Taffin
,
N.
,
Lucero
,
A.
, and
Mackay
,
W. E.
,
2020
, “
SemanticCollage: Enriching Digital Mood Board Design With Semantic Labels
,”
Proceedings of the 2020 ACM Designing Interactive Systems Conference
,
Eindhoven
,
July 6–10
, pp.
407
418
.
60.
Wan
,
Q.
, and
Lu
,
Z.
,
2023
, “
GANCollage: A GAN-Driven Digital Mood Board to Facilitate Ideation in Creativity Support
,”
Proceedings of the 2023 ACM Designing Interactive Systems Conference
,
Pittsburgh, PA
,
July 10–14
, pp.
136
146
.
61.
Ivanov
,
A.
,
Ledo
,
D.
,
Grossman
,
T.
,
Fitzmaurice
,
G.
, and
Anderson
,
F.
,
2022
, “
MoodCubes: Immersive Spaces for Collecting, Discovering and Envisioning Inspiration Materials
,”
Proceedings of the 2022 ACM Designing Interactive Systems Conference
,
Virtual Event
,
June 13–17
, pp.
189
203
.
62.
Kang
,
Y.
,
Sun
,
Z.
,
Wang
,
S.
,
Huang
,
Z.
,
Wu
,
Z.
, and
Ma
,
X.
,
2021
, “
MetaMap: Supporting Visual Metaphor Ideation Through Multi-Dimensional Example-Based Exploration
,”
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
,
Yokohama, Japan
,
May 8–13
.
63.
Qiu
,
Y.
, and
Jin
,
Y.
,
2023
, “
Document Understanding-Based Design Support: Language Model Based Design Knowledge Extraction
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
.
64.
Ezemba
,
J.
,
Cunningham
,
J. D.
, and
Tucker
,
C. S.
,
2023
, “
Parameter Extraction From Images Using Multilabel Supervised Learning
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
.
65.
Nomaguchi
,
Y.
,
Morikawa
,
H.
,
Nishida
,
R.
, and
Fujita
,
K.
,
2024
, “
A Framework of Real-Time Knowledge Capture and Formalization for Model-Based Design With Spoken Annotation and Design Operations
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
10
), p.
101004
.
66.
Cila
,
N.
,
2022
, “
Designing Human-Agent Collaborations: Commitment, Responsiveness, and Support
,”
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
,
New Orleans, LA
,
Apr. 29–May 5
, pp.
1
18
.
67.
Heer
,
J.
,
2019
, “
Agency Plus Automation: Designing Artificial Intelligence Into Interactive Systems
,”
Proc. Natl. Acad. Sci.
,
116
(
6
), pp.
1844
1850
.
68.
Liu
,
A.
, and
Lu
,
S.
,
2020
, “
Functional Design Framework for Innovative Design Thinking in Product Development
,”
CIRP J. Manuf. Sci. Technol.
,
30
, pp.
105
117
.
69.
Liu
,
M.
,
Shi
,
R.
,
Chen
,
L.
,
Zhang
,
Z.
,
Xu
,
C.
, and
Wei
,
X.
,
2024
, “
One-2-3-45++: Fast Single Image to 3D Objects with Consistent Multi-View Generation and 3D Diffusion
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Seattle, WA
,
June 17–21
.
70.
Hughes
,
R. T.
,
Zhu
,
L.
, and
Bednarz
,
T.
,
2021
, “
Generative Adversarial Networks-Enabled Human–Artificial Intelligence Collaborative Applications for Creative and Design Industries: A Systematic Review of Current Approaches and Trends
,”
Front. Artif. Intell.
,
4
, pp.
604234
.
71.
Rezwana
,
J.
, and
Maher
,
M. L.
,
2023
, “
Designing Creative AI Partners With COFI: A Framework for Modeling Interaction in Human-AI Co-Creative Systems
,”
ACM Trans. Comput.-Hum. Interact.
,
30
(
5
), pp.
1
28
.
72.
Jo
,
A.
,
2023
, “
What ChatGPT and Generative AI Mean for Science
,”
Nature
,
614
(
1
), pp.
214
216
.
73.
Rombach
,
R.
,
Blattmann
,
A.
,
Lorenz
,
D.
,
Esser
,
P.
, and
Ommer
,
B.
,
2022
, “
High-Resolution Image Synthesis With Latent Diffusion Models
,”
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
New Orleans, LA
,
June 21–24
, pp.
10674
10685
.
74.
Zhang
,
L.
,
Rao
,
A.
, and
Agrawala
,
M.
,
2023
, “
Adding Conditional Control to Text-to-Image Diffusion Models
,”
2023 IEEE/CVF International Conference on Computer Vision (ICCV)
,
Paris, France
,
Oct. 4–6
, pp.
3813
3824
.
75.
Kirillov
,
A.
,
Mintun
,
E.
,
Ravi
,
N.
,
Mao
,
H.
,
Rolland
,
C.
,
Gustafson
,
L.
,
Xiao
,
T.
,
Whitehead
,
S.
,
Berg
,
A. C.
,
Lo
,
W.-Y.
, et al
,
2023
, “
Segment Anything
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Paris, France
,
Oct. 4–6
, pp.
4015
4026
.
76.
Long
,
X.
,
Guo
,
Y.-C.
,
Lin
,
C.
,
Liu
,
Y.
,
Dou
,
Z.
,
Liu
,
L.
,
Ma
,
Y.
, et al
,
2024
, “
Wonder3D: Single Image to 3D Using Cross-Domain Diffusion
,”
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Seattle, WA
,
June 17–21
, pp.
9970
9980
.
77.
Oppenlaender
,
J.
,
Linder
,
R.
, and
Silvennoinen
,
J.
,
2024
, “
Prompting AI Art: An Investigation Into the Creative Skill of Prompt Engineering
,”
Int. J. Hum. Comput. Inter.
, pp.
1
23
.
78.
Lee
,
T.
,
Yasunaga
,
M.
,
Meng
,
C.
,
Mai
,
Y.
,
Park
,
J. S.
,
Gupta
,
A.
,
Zhang
,
Y.
, et al
,
2023
, “
Holistic Evaluation of Text-to-Image Models
,”
Adv. Neural Inf. Process. Syst.
,
36
, pp.
69981
70011
. https://proceedings.neurips.cc/paper_files/paper/2023/file/dd83eada2c3c74db3c7fe1c087513756-Paper-Datasets_and_Benchmarks.pdf
79.
Xu
,
J.
,
Liu
,
X.
,
Wu
,
Y.
,
Tong
,
Y.
,
Li
,
Q.
,
Ding
,
M.
,
Tang
,
J.
, and
Dong
,
Y.
,
2024
, “
Imagereward: Learning and Evaluating Human Preferences for Text-to-Image Generation
,”
Adv. Neural Inf. Process. Syst.
,
36
, pp.
15903
15935
. https://proceedings.neurips.cc/paper_files/paper/2023/file/33646ef0ed554145eab65f6250fab0c9-Paper-Conference.pdf
80.
Otani
,
M.
,
Togashi
,
R.
,
Sawai
,
Y.
,
Ishigami
,
R.
,
Nakashima
,
Y.
,
Rahtu
,
E.
,
Heikkilä
,
J.
, and
Satoh
,
S.
,
2023
, “
Toward Verifiable and Reproducible Human Evaluation for Text-to-Image Generation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Vancouver, Canada
,
June 18–22
, pp.
14277
14286
.
81.
Wu
,
T.
,
Jiang
,
E.
,
Donsbach
,
A.
,
Gray
,
J.
,
Molina
,
A.
,
Terry
,
M.
, and
Cai
,
C. J.
,
2022
, “
PromptChainer: Chaining Large Language Model Prompts Through Visual Programming
,”
Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems
,
New Orleans, LA
,
Apr. 29–May 5
, pp.
1
10
.
82.
Gonçalves
,
M.
,
Cardoso
,
C.
, and
Badke-Schaub
,
P.
,
2016
, “
Inspiration Choices That Matter: The Selection of External Stimuli During Ideation
,”
Des. Sci.
,
2
, p.
e10
.
83.
Kwon
,
E.
,
Rao
,
V.
, and
Goucher-Lambert
,
K.
,
2023
, “
Understanding Inspiration: Insights Into How Designers Discover Inspirational Stimuli Using an AI-Enabled Platform
,”
Des. Stud.
,
88
, p.
101202
.
84.
Eckert
,
C.
, and
Stacey
,
M.
,
2000
, “
Sources of Inspiration: A Language of Design
,”
Des. Stud.
,
21
(
5
), pp.
523
538
.
85.
Brooke
,
J.
,
1996
, “
SUS—A Quick and Dirty Usability Scale
,”
Usability Eval. Ind.
,
189
(
194
), pp.
4
7
.
86.
Cherry
,
E.
, and
Latulipe
,
C.
,
2014
, “
Quantifying the Creativity Support of Digital Tools Through the Creativity Support Index
,”
ACM Trans. Comput.-Hum. Interact.
,
21
(
4
), pp.
1
25
.
87.
Sarkar
,
P.
, and
Chakrabarti
,
A.
,
2011
, “
Assessing Design Creativity
,”
Des. Stud.
,
32
(
4
), pp.
348
383
.
88.
Goucher-Lambert
,
K.
, and
Cagan
,
J.
,
2019
, “
Crowdsourcing Inspiration: Using Crowd Generated Inspirational Stimuli to Support Designer Ideation
,”
Des. Stud.
,
61
, pp.
1
29
.
89.
Gomes
,
M. G.
,
Ogliari
,
A.
,
Fernandes
,
R. B.
, and
Marques
,
K. O.
,
2022
, “
Evaluation of Physical Models as Creative Stimuli in Conceptual Design of Products
,”
Des. Stud.
,
81
, pp.
1
36
.
90.
Wu
,
T.
,
Terry
,
M.
, and
Cai
,
C. J.
,
2022
, “
AI Chains: Transparent and Controllable Human-AI Interaction by Chaining Large Language Model Prompts
,”
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
,
New Orleans, LA
,
Apr. 29–May 5
, pp.
1
22
.
91.
Brade
,
S.
,
Wang
,
B.
,
Sousa
,
M.
,
Oore
,
S.
, and
Grossman
,
T.
,
2023
, “
Promptify: Text-to-Image Generation Through Interactive Prompt Exploration With Large Language Models
,”
Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology
,
San Francisco, CA
,
Oct. 29–Nov. 1
, pp.
1
14
.
92.
Zhou
,
J.
,
Li
,
R.
,
Tang
,
J.
,
Tang
,
T.
,
Li
,
H.
,
Cui
,
W.
, and
Wu
,
Y.
,
2024
, “
Understanding Nonlinear Collaboration Between Human and AI Agents: A Co-Design Framework for Creative Design
,”
Proceedings of the CHI Conference on Human Factors in Computing Systems
,
Honolulu, HI
,
May 11–16
, pp.
1
16
.
93.
MacNeil
,
S.
,
Huang
,
Z.
,
Chen
,
K.
,
Ding
,
Z.
,
Yu
,
A.
,
Nakai
,
K.
, and
Dow
,
S. P.
,
2023
, “
Freeform Templates: Combining Freeform Curation With Structured Templates
,”
Proceedings of the 15th Conference on Creativity and Cognition
,
Virtual Event
,
June 19–21
, Association for Computing Machinery, New York, NY, pp.
478
488
.
94.
Jeon
,
Y.
,
Jin
,
S.
,
Shih
,
P. C.
, and
Han
,
K.
,
2021
, “
FashionQ: an AI-Driven Creativity Support Tool for Facilitating Ideation in Fashion Design
,”
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
,
Yokohama, Japan
,
May 8–13
, pp.
1
18
.
You do not currently have access to this content.