Abstract

Designing the 3D layout of interconnected systems (SPI2), which is a ubiquitous task in engineered systems, is of crucial importance. Intuitively, it can be thought of as the simultaneous placement of (typically rigid) components and subsystems, as well as the design of the routing of (typically deformable) interconnects between these components and subsystems. However, obtaining solutions that meet the design, manufacturing, and life-cycle constraints is extremely challenging due to highly complex and nonlinear interactions between geometries, the multi-physics environment in which the systems participate, the intricate mix of rigid and deformable geometry, as well as the difficult manufacturing and life-cycle constraints. Currently, this design task heavily relies on human interaction even though the complexity of searching the design space of most practical problems rapidly exceeds human abilities. In this work, we take advantage of high-performance hierarchical geometric representations and automatic differentiation to simultaneously optimize the packing and routing of complex engineered systems, while completely relaxing the constraints on the complexity of the solid shapes that can be handled and enable intricate yet functionally meaningful objective functions. Moreover, we show that by simultaneously optimizing the packing volume as well as the routing lengths, we produce tighter packing and routing designs than by focusing on the bounding volume alone. We show that our proposed approach has a number of significant advantages and offers a highly parallelizable, more integrated solution for complex SPI2 designs, leading to faster development cycles with fewer iterations, and better system complexity management. Moreover, we show that our formulation can handle complex cost functions in the optimization, such as manufacturing and life-cycle constraints, thus paving the way for significant advancements in engineering novel complex interconnected systems.

References

1.
Peddada
,
S. R.
,
Zeidner
,
L. E.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2021
, “
An Introduction to 3D SPI2 (Spatial Packaging of Interconnected Systems With Physics Interactions) Design Problems: A Review of Related Work, Existing Gaps, Challenges, and Opportunities
,”
ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Online
,
Aug. 17–19
.
2.
Sakti
,
A.
,
Zeidner
,
L.
,
Hadzic
,
T.
,
Rock
,
B. S.
, and
Quartarone
,
G.
,
2016
, “
Constraint Programming Approach for Spatial Packaging Problem
,”
Proceedings of the 13th International Conference on Integration of AI and OR Techniques in Constraint Programming, CPAIOR 2016
,
Banff, AB, Canada
,
May 29–June 1
,
Springer
, pp.
319
328
.
3.
Peddada
,
S. R.
,
Zeidner
,
L. E.
,
Ilies
,
H. T.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2022
, “
Toward Holistic Design of Spatial Packaging of Interconnected Systems With Physical Interactions (SPI2)
,”
ASME J. Mech. Des.
,
144
(
12
), p.
120801
.
4.
Liu
,
Q.
, and
Wang
,
C.
,
2011
, “
A Discrete Particle Swarm Optimization Algorithm for Rectilinear Branch Pipe Routing
,”
Assem. Autom.
,
31
(
4
), pp.
363
368
.
5.
Cui
,
Q.
,
Rong
,
V.
,
Chen
,
D.
, and
Matusik
,
W.
,
2023
, “
Dense, Interlocking-Free and Scalable Spectral Packing of Generic 3D Objects
,”
ACM Trans. Graph
,
42
(
4
), pp.
1
14
.
6.
Knuth
,
D. E.
,
1974
, “
Postscript About NP-Hard Problems
,”
ACM SIGACT News
,
6
(
2
), pp.
15
16
.
7.
Peddada
,
S. R.
,
Rodriguez
,
S. B.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2020
, “
Automated Layout Generation Methods for 2D Spatial Packing
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Online
,
Aug. 17–19
.
8.
Jessee
,
A.
,
Peddada
,
S. R.
,
Lohan
,
D. J.
,
Allison
,
J. T.
, and
James
,
K. A.
,
2020
, “
Simultaneous Packing and Routing Optimization Using Geometric Projection
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111702
.
9.
Peddada
,
S. R.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2021
, “
A Novel Two-Stage Design Framework for Two-Dimensional Spatial Packing of Interconnected Components
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031706
.
10.
Parrott
,
C.
,
Peddada
,
S.
,
Allison
,
J. T.
, and
James
,
K.
,
2023
, “
Machine Learning Surrogates for Optimal 2D Spatial Packaging of Interconnected Systems With Physics Interactions (SPI2)
,”
AIAA AVIATION 2023 Forum
,
San Diego, CA and Online
,
June 12–16
, p.
4375
.
11.
Bhattacharyya
,
A.
,
Peddada
,
S. R.
,
Bello
,
W. B.
,
Zeidner
,
L. E.
,
Allison
,
J. T.
, and
James
,
K. A.
,
2022
, “
Simultaneous 3D Component Packing and Routing Optimization Using Geometric Projection
,”
AIAA SCITECH 2022 Forum
,
San Diego, CA and Online
, p.
2096
.
12.
Bello
,
W.
,
Peddada
,
S. R.
,
Bhattacharyya
,
A.
,
Zeidner
,
L.
,
Allison
,
J. T.
, and
James
,
K.
,
2024
, “
Multi-Physics 3D Component Placement and Routing Optimization Using Geometric Projection
,”
ASME J. Mech. Des.
,
146
(
8
), p.
081702
.
13.
Chen
,
J.
, and
Ilieş
,
H. T.
,
2020
, “
Maximal Disjoint Ball Decompositions for Shape Modeling and Analysis
,”
Comput. Aided Des.
,
126
, p.
102850
.
14.
Dong
,
H.
,
Guarneri
,
P.
, and
Fadel
,
G.
,
2011
, “
Bi-level Approach to Vehicle Component Layout With Shape Morphing
,”
ASME. J. Mech. Des
,
133
(
4
), p.
041008
.
15.
Agafonov
,
A.
, and
Myasnikov
,
V.
,
2018
, “
Vehicle Routing Algorithms Based on a Route Reservation Approach
,”
J. Phys.: Conf. Ser.
,
1096
, p.
012029
.
16.
Peddada
,
S. R.
,
Tannous
,
P. J.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2020
, “
Optimal Sensor Placement Methods in Active High Power Density Electronic Systems With Experimental Validation
,”
ASME J. Mech. Des.
,
142
(
2
), p.
023501
.
17.
Panesar
,
A.
,
Brackett
,
D.
,
Ashcroft
,
I.
,
Wildman
,
R.
, and
Hague
,
R.
,
2015
, “
Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111414
.
18.
Tisdale
,
J.
,
Kim
,
Z.
, and
Hedrick
,
J. K.
,
2009
, “
Autonomous UAV Path Planning and Estimation
,”
IEEE Robot. Autom. Mag.
,
16
(
2
), pp.
35
42
.
19.
Jan
,
G. E.
,
Chang
,
K. Y.
, and
Parberry
,
I.
,
2008
, “
Optimal Path Planning for Mobile Robot Navigation
,”
IEEE/ASME Trans. Mechatron.
,
13
(
4
), pp.
451
460
.
20.
Cetera
,
A.
,
Rabiee
,
A.
,
Ghafoori
,
S.
, and
Abiri
,
R.
,
2024
, “Classification of Emerging Neural Activity From Planning to Grasp Execution Using a Novel EEG-Based BCI Platform,” preprint arXiv:2402.03493.
21.
Suchorab
,
P.
, and
Kowalski
,
D.
,
2018
, “
Methods of Routing and Sizing of Water Supply Networks
,”
2nd International Conference on Science and Technology Current Issues in Water Distribution and Treatment (CIWT 2017)
,
Brenna, Poland
,
May 31–June 2
.
22.
Araneo
,
R.
,
Celozzi
,
S.
, and
Vergine
,
C.
,
2015
, “
Eco-Sustainable Routing of Power Lines for the Connection of Renewable Energy Plants to the Italian High-Voltage Grid
,”
Int. J. Energy Environ. Eng.
,
6
, pp.
9
19
.
23.
Abdel-Malek
,
K.
,
Yeh
,
H.
, and
Maropis
,
N.
,
1998
, “
Determining Interference Between Pairs of Solids Defined Constructively in Computer Animation
,”
Eng. Comput.
,
14
(
1
), pp.
48
58
.
24.
Yin
,
S.
,
Cagan
,
J.
, and
Hodges
,
P.
,
2004
, “
Layout Optimization of Shapeable Components With Extended Pattern Search Applied to Transmission Design
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
188
191
.
25.
Rabiee
,
A.
,
Ghafoori
,
S.
,
Cetera
,
A.
,
Besio
,
W.
, and
Abiri
,
R.
,
2024
, “A Comparative Study of Conventional and Tripolar EEG for High-Performance Reach-to-Grasp BCI Systems,” preprint arXiv:2402.09448.
26.
Xue
,
T.
,
Wu
,
M.
,
Lu
,
L.
,
Wang
,
H.
,
Dong
,
H.
, and
Chen
,
B.
,
2023
, “
Learning Gradient Fields for Scalable and Generalizable Irregular Packing
,”
SIGGRAPH Asia 2023 Conference Papers
,
Sydney, NSW, Australia
,
Dec. 12–15
, pp.
1
11
.
27.
Yang
,
S.
,
Song
,
S.
,
Chu
,
S.
,
Song
,
R.
,
Cheng
,
J.
,
Li
,
Y.
, and
Zhang
,
W.
,
2023
, “
Heuristics Integrated Deep Reinforcement Learning for Online 3D Bin Packing
,”
IEEE Trans. Autom. Sci. Eng.
,
21
(
1
), pp.
939
950
.
28.
Lamas-Fernandez
,
C.
,
Bennell
,
J. A.
, and
Martinez-Sykora
,
A.
,
2023
, “
Voxel-Based Solution Approaches to the Three-Dimensional Irregular Packing Problem
,”
Oper. Res.
,
71
(
4
), pp.
1298
1317
.
29.
Pan
,
J.-H.
,
Hui
,
K.-H.
,
Gao
,
X.
,
Zhu
,
S.
,
Liu
,
Y.-H.
,
Heng
,
P.-A.
, and
Fu
,
C.-W.
,
2023
, “
SDF-Pack: Towards Compact Bin Packing With Signed-Distance-Field Minimization
,”
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Detroit, MI
,
Oct. 1–5
, IEEE, pp.
10612
10619
.
30.
Wang
,
X.
,
Liu
,
Z.
, and
Liu
,
J.
,
2023
, “
Mobile Robot Path Planning Based on an Improved A* Algorithm
,”
2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC)
,
Chongqing, China
,
Dec. 8–10
, pp.
1093
1098
.
31.
Sonny
,
A.
,
Yeduri
,
S. R.
, and
Cenkeramaddi
,
L. R.
,
2023
, “
Q-Learning-Based Unmanned Aerial Vehicle Path Planning With Dynamic Obstacle Avoidance
,”
Appl. Soft Comput.
,
147
, p.
110773
.
32.
Zhou
,
Y.
,
Kong
,
X.
,
Lin
,
K.-P.
, and
Liu
,
L.
,
2024
, “
Novel Task Decomposed Multi-Agent Twin Delayed Deep Deterministic Policy Gradient Algorithm for Multi-UAV Autonomous Path Planning
,”
Knowl.-Based Syst.
,
287
, p.
111462
.
33.
Huh
,
J.
,
Jun
,
S.
, and
Kim
,
I. Y.
,
2024
, “
Thermally Driven Multi-Objective Packing Optimization Using Acceleration Fields
,”
ASME J. Mech. Des.
,
146
(
8
), p.
081703
.
34.
Szykman
,
S.
,
Cagan
,
J.
, and
Weisser
,
P.
,
1998
, “
An Integrated Approach to Optimal Three Dimensional Layout and Routing
,”
ASME. J. Mech. Des.
,
120
(
3
), pp.
510
512
.
35.
Schaf̈er
,
M.
, and
Lengauer
,
T.
,
2001
, “
Automated Layout Generation and Wiring Area Estimation for 3D Electronic Modules
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
330
336
.
36.
Cagan
,
J.
,
Shimada
,
K.
, and
Yin
,
S.
,
2002
, “
A Survey of Computational Approaches to Three-Dimensional Layout Problems
,”
Comput. Aided Des.
,
34
(
8
), pp.
597
611
.
37.
Kaluschke
,
M.
,
Zimmermann
,
U.
,
Danzer
,
M.
,
Zachmann
,
G.
, and
Weller
,
R.
,
2014
, “Massively-Parallel Proximity Queries for Point Clouds,”
Virtual Reality Interactions and Physical Simulations (VRIPhys)
,
J.
Bender
,
C.
Duriez
,
F.
Jaillet
, and
G.
Zachmann
, eds.,
Eurographics Association
,
Bremen
, pp.
19
28
.
38.
Lauterbach
,
C.
,
Mo
,
Q.
, and
Manocha
,
D.
,
2010
, “
Gproximity: Hierarchical GPU-Based Operations for Collision and Distance Queries
,”
Comput. Graph. Forum
,
29
(
2
), pp.
419
428
.
39.
Behandish
,
M.
, and
Ilieş
,
H. T.
,
2016
, “
Haptic Assembly Using Skeletal Densities and Fourier Transforms
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
2
), p.
021002
.
40.
Behandish
,
M.
, and
Ilieş
,
H. T.
,
2016
, “
Analytic Methods for Geometric Modeling Via Spherical Decomposition
,”
Comput. Aided Des.
,
70
, pp.
100
115
.
41.
Moses
,
W. S.
,
Narayanan
,
S. H. K.
,
Paehler
,
L.
,
Churavy
,
V.
,
Schanen
,
M.
,
Hückelheim
,
J.
,
Doerfert
,
J.
, and
Hovland
,
P.
,
2022
, “
Scalable Automatic Differentiation of Multiple Parallel Paradigms Through Compiler Augmentation
,”
SC '22: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis
,
Dallas, TX
,
Nov. 13–18
, pp.
1
18
.
42.
Hückelheim
,
J.
, and
Hascoët
,
L.
,
2022
, “
Source-to-Source Automatic Differentiation of Openmp Parallel Loops
,”
ACM Trans. Math. Softw.
,
48
(
1
), pp.
1
32
.
43.
Ifrim
,
I.
,
Vassilev
,
V.
, and
Lange
,
D. J.
,
2023
, “
GPU Accelerated Automatic Differentiation With Clad
,”
J. Phys.: Conf. Ser.
,
2438
, p.
012043
.
44.
Zubair
,
M.
,
Ranjan
,
D.
,
Walden
,
A.
,
Nastac
,
G.
,
Nielsen
,
E.
,
Diskin
,
B.
,
Paterno
,
M.
,
Jung
,
S.
, and
Davis
,
J. H.
,
2023
, “
Efficient GPU Implementation of Automatic Differentiation for Computational Fluid Dynamics
,”
2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC)
,
Goa, India
,
Dec. 18–21
, pp.
377
386
.
45.
Fialko
,
S.
,
2021
, “
Parallel Finite Element Solver for Multi-Core Computers With Shared Memory
,”
Comput. Math. Appl.
,
94
, pp.
1
14
.
46.
Karniadakis
,
G. E.
, and
Orszag
,
S. A.
,
2020
, “Parallel Spectral Computations of Complex Engineering Flows,”
Supercomputing in Engineering Analysis
, 1st ed.,
CRC Press
,
Boca Raton, FL
, pp.
289
324
.
47.
Requicha
,
A.
,
1980
, “
Representations for Rigid Solids: Theory, Methods, and Systems
,”
ACM Comput. Surv.
,
12
(
4
), pp.
437
464
.
48.
Goldman
,
R.
,
2011
, “
Understanding Quaternions
,”
Graph. Models
,
73
(
2
), pp.
21
49
.
49.
Hamilton
,
W. R.
,
1866
,
Elements of Quaternions
,
Longmans, Green, & Company
,
London, UK
.
50.
Dooley
,
J.
, and
McCarthy
,
J.
,
1991
, “
Spatial Rigid Body Dynamics Using Dual Quaternion Components
,”
Proceedings. 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
,
Apr. 9–11
.
51.
Clifford
,
W. K.
,
1882
,
Mathematical Papers by William Kingdon Clifford: Edited by Robert Tucker, With an Introduction by HJ Stephen Smith
,
Macmillan and Company
,
New York
.
52.
O’Connor
,
M. A.
,
Srinivasan
,
V.
, and
Jones
,
A.
,
1996
,
Connected Lie and Symmetry Subgroups of the Rigid Motions: Foundations and Classification
,
IBM TJ Watson Research Center
,
Yorktown Heights, NY
.
53.
Boothby
,
W. M.
,
1986
,
An Introduction to Differentiable Manifolds and Riemannian Geometry
,
Academic Press
,
Cambridge, MA
.
54.
Tiwari
,
S.
,
Fadel
,
G.
, and
Fenyes
,
P.
,
2010
, “
A Fast and Efficient Compact Packing Algorithm for SAE and ISO Luggage Packing Problems
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
2
), p.
021010
.
55.
Zhao
,
H.
,
Pan
,
Z.
,
Yu
,
Y.
, and
Xu
,
K.
,
2023
, “
Learning Physically Realizable Skills for Online Packing of General 3D Shapes
,”
ACM Trans. Graph.
,
42
(
5
), pp.
1
21
.
56.
Lysenko
,
M.
,
2013
, “
Fourier Collision Detection
,”
Int. J. Robot. Res.
,
32
(
4
), pp.
483
503
.
57.
Kavraki
,
L.
,
1995
, “
Computation of Configuration-Space Obstacles Using the Fast Fourier Transform
,”
IEEE Trans. Rob. Autom.
,
11
(
3
), pp.
408
413
.
58.
James
,
D. L.
, and
Pai
,
D. K.
,
2004
, “
BD-Tree: Output-Sensitive Collision Detection for Reduced Deformable Models
,”
SIGGRAPH04: Special Interest Group on Computer Graphics and Interactive Techniques
,
Los Angeles CA
,
Aug. 8–12
, pp.
393
398
.
59.
Weller
,
R.
,
2013
,
Inner Sphere Trees
,
Springer International Publishing
,
Heidelberg
, pp.
113
144
.
60.
Barbier
,
A.
, and
Galin
,
E.
,
2004
, “
Fast Distance Computation Between a Point and Cylinders, Cones, Line-Swept Spheres and Cone-Spheres
,”
J. Graph. Tools
,
9
(
2
), pp.
11
19
.
61.
Agarwal
,
S.
,
Srivatsan
,
R. A.
, and
Bandyopadhyay
,
S.
,
2016
, “
Analytical Determination of the Proximity of Two Right-Circular Cylinders in Space
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041010
.
62.
Zsombor-Murray
,
P.
,
2018
, “
Intrusion, Proximity and Stationary Distance
,” Computational Kinematics: Proceedings of the 7th International Workshop on Computational Kinematics, Futuroscope-Poitiers, May 2017,
Springer
, pp.
475
482
.
63.
Kirkup
,
S.
,
2019
, “
The Boundary Element Method in Acoustics: A Survey
,”
Appl. Sci.
,
9
(
8
), p.
1642
.
64.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
International Conference on Learning Representations
,
San Diego, CA
,
May 7–9
.
65.
Kambampati
,
S.
,
Taber
,
A.
,
Kumar
,
G.
, and
Kim
,
H. A.
,
2023
, “
A CAD-Aware Plug-and-Play Topology Optimization Framework Using Moments
,”
Struct. Multidiscipl. Optim.
,
66
(
3
), p.
63
.
66.
Man
,
D.
,
Uda
,
K.
,
Ueyama
,
H.
,
Ito
,
Y.
, and
Nakano
,
K.
,
2010
, “
Implementations of Parallel Computation of Euclidean Distance Map in Multicore Processors and GPUs
,”
2010 First International Conference on Networking and Computing
,
Higashi, Japan
,
Nov. 17–19
.
67.
Andrej
,
J.
,
Atallah
,
N.
,
Bäcker
,
J.-P.
,
Camier
,
J.
,
Copeland
,
D.
,
Dobrev
,
V.
, and
Dudouit
,
Y.
,
2024
, “
High-Performance Finite Elements With MFEM
,”
Int. J. High Perform. Comput. Appl.
,
38
(
5
), pp.
447
467
.
68.
Fischer
,
P.
,
Min
,
M.
,
Rathnayake
,
T.
,
Dutta
,
S.
,
Kolev
,
T.
,
Dobrev
,
V.
, and
Camier
,
J.-S.
,
2020
, “
Scalability of High-Performance PDE Solvers
,”
Int. J. High Perform. Comput. Appl.
,
34
(
5
), pp.
562
586
.
You do not currently have access to this content.