Abstract

The parallel mechanism (PM) with a configurable movable platform (CMP) holds the potential for achieving a high-response speed and high-stiffness integrated design of a gripper-wrist system. The motion of two rotations and one translation (2R1T), closely resembling the movement of a human wrist joint, is highly complex. Therefore, research on 2R1T PM with CMP remains unexplored. Additionally, a systematic method for constructing PM with CMP is also lacking. This paper proposes fundamental design principles for PM with CMP. The topological arrangements of 2R1T PM with CMP are classified according to the number of limbs, their types, and the CMP structure. The basic constraint conditions and the redundant constraint conditions of 2R1T PM are analyzed. By establishing the relationship between finite motions, joint geometric parameters, and constraint screws, a series of limb structures that provide specific constraints in finite motions are constructed. Several configuration examples of gripper-wrist mechanism are provided, which can serve as a guide for subsequent researches. The design approach of CMP is discussed. The performance advantages of such mechanisms are validated through simulation-based comparisons.

References

1.
Tian
,
C.
, and
Zhang
,
D.
,
2020
, “
A New Family of Generalized Parallel Manipulators With Configurable Moving Platforms
,”
Mech. Mach. Theory
,
153
, p.
103997
.
2.
Yi
,
B.-J.
,
Na
,
H. Y.
,
Lee
,
J. H.
,
Hong
,
Y.-S.
,
Oh
,
S.-R.
,
Suh
,
I. H.
, and
Kim
,
W. K.
,
2002
, “
Design of a Parallel-Type Gripper Mechanism
,”
Int. J. Robot. Res.
,
21
(
7
), pp.
661
676
.
3.
Tian
,
C.
,
Zhang
,
D.
,
Tang
,
H.
, and
Wu
,
C.
,
2021
, “
Structure Synthesis of Reconfigurable Generalized Parallel Mechanisms With Configurable Platforms
,”
Mech. Mach. Theory
,
160
, p.
104281
.
4.
Wen
,
K.
,
Nguyen
,
T. S.
,
Harton
,
D.
,
Laliberte
,
T.
, and
Gosselin
,
C.
,
2020
, “
A Backdrivable Kinematically Redundant (6+3)-Degree-of-Freedom Hybrid Parallel Robot for Intuitive Sensorless Physical Human–Robot Interaction
,”
IEEE Trans. Robot.
,
37
(
4
), pp.
1222
1238
.
5.
Yiğit
,
A.
,
Breton
,
D.
,
Zhou
,
Z.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2023
, “
Kinematic Analysis and Design of a Novel (6+3)-DoF Parallel Robot With Fixed Actuators
,”
2023 IEEE International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29–June 2
, IEEE, pp.
9693
9699
.
6.
Liu
,
J.
,
Zhang
,
D.
,
Chen
,
Y.
,
Xia
,
Z.
, and
Wu
,
C.
,
2022
, “
Design of a Class of Generalized Parallel Mechanisms for Adaptive Landing and Aerial Manipulation
,”
Mech. Mach. Theory
,
170
, p.
104692
.
7.
Huang
,
Z.
,
Wang
,
J.
, and
Fang
,
Y. F.
,
2002
, “
Analysis of Instantaneous Motions of Deficient-Rank 3-RPS Parallel Manipulators
,”
Mech. Mach. Theory
,
37
(
2
), pp.
229
240
.
8.
Schadlbauer
,
J.
,
Walter
,
D. R.
, and
Husty
,
M. L.
,
2014
, “
The 3-RPS Parallel Manipulator From an Algebraic Viewpoint
,”
Mech. Mach. Theory
,
75
, pp.
161
176
.
9.
Mohan Rao
,
N.
, and
Mallikarjuna Rao
,
K.
,
2009
, “
Dimensional Synthesis of a Spatial 3-RPS Parallel Manipulator for a Prescribed Range of Motion of Spherical Joints
,”
Mech. Mach. Theory
,
44
(
2
), pp.
477
486
.
10.
Di Gregorio
,
R.
,
2003
, “
Kinematics of the 3-UPU Wrist
,”
Mech. Mach. Theory
,
38
(
3
), pp.
253
263
.
11.
Han
,
C.
,
Kim
,
J.
,
Kim
,
J.
, and
Park
,
F. C.
,
2002
, “
Kinematic Sensitivity Analysis of the 3-UPU Parallel Mechanism
,”
Mech. Mach. Theory
,
37
(
8
), pp.
787
798
.
12.
Cui
,
G.
,
Liu
,
J.
,
Hu
,
Z.
,
Zhang
,
Y.
, and
Hou
,
H.
,
2021
, “
Performance Analysis and Optimization of a Rigid-Flexible Parallel Manipulator
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
234
(
23
), pp.
4620
4635
.
13.
Shen
,
F.
,
Yang
,
S.
,
Wang
,
H.
, and
Dai
,
J. S.
,
2023
, “
Twist and Finite Twist Analysis of 2UPR-SPR Parallel Mechanism Based Upon Screw Theory
,”
Mech. Mach. Theory
,
184
, p.
105276
.
14.
Ni
,
Y.
,
Zhang
,
B.
,
Sun
,
Y.
, and
Zhang
,
Y.
,
2016
, “
Accuracy Analysis and Design of A3 Parallel Spindle Head
,”
Chin. J. Mech. Eng.
,
29
(
2
), pp.
239
249
.
15.
Chen
,
X.
,
Liu
,
X. J.
,
Xie
,
F.
, and
Sun
,
T.
,
2014
, “
A Comparison Study on Motion/Force Transmissibility of Two Typical 3-DOF Parallel Manipulators: The Sprint Z3 and A3 Tool Heads
,”
Int. J. Adv. Robot. Syst.
,
11
(
1
), p.
5
.
16.
Wang
,
D.
,
Wu
,
J.
,
Wang
,
L.
, and
Liu
,
Y.
,
2017
, “
A Postprocessing Strategy of a 3-DOF Parallel Tool Head Based on Velocity Control and Coarse Interpolation
,”
IEEE Trans. Ind. Electron.
,
65
(
8
), pp.
6333
6342
.
17.
Wang
,
D.
,
Wu
,
J.
, and
Wang
,
L.
,
2018
, “
Research on the Error Transfer Characteristics of a 3-DOF Parallel Tool Head
,”
Robot. Comput.-Integr. Manuf.
,
50
, pp.
266
275
.
18.
Caccavale
,
F.
,
Siciliano
,
B.
, and
Villani
,
L.
,
2003
, “
The Tricept Robot: Dynamics and Impedance Control
,”
IEEE/ASME Trans. Mechatron.
,
8
(
2
), pp.
263
268
.
19.
Ye
,
W.
, and
Li
,
Q.
,
2019
, “
Type Synthesis of Lower Mobility Parallel Mechanisms: A Review
,”
Chin. J. Mech. Eng.
,
32
, pp.
1
11
.
20.
Hervé
,
J. M.
,
1999
, “
The Lie Group of Rigid Body Displacements, A Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
(
5
), pp.
719
730
.
21.
Li
,
Q.
,
Huang
,
Z.
, and
Hervé
,
J. M.
,
2004
, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Robot. Autom.
,
20
(
2
), pp.
173
180
.
22.
Li
,
Q.
, and
Hervé
,
J. M.
,
2010
, “
1T2R Parallel Mechanisms Without Parasitic Motion
,”
IEEE Trans. Robot.
,
26
(
3
), pp.
401
410
.
23.
Li
,
Q.
,
Hervé
,
J. M.
,
Ye
,
W.
,
Li
,
Q.
, and
Hervé
,
J. M.
,
2014
, “
Type Synthesis of 3-DOF PU-Equivalent Parallel Mechanisms
,”
IEEE Trans. Robot.
,
6
(
30
), pp.
1333
1343
.
24.
Gao
,
F.
,
Li
,
W.
,
Zhao
,
X.
,
Jin
,
Z.
, and
Zhao
,
H.
,
2002
, “
New Kinematic Structures for 2-, 3-, 4-, and 5-DOF Parallel Manipulator Designs
,”
Mech. Mach. Theory
,
37
(
11
), pp.
1395
1411
.
25.
Yang
,
J.
,
Gao
,
F.
,
Zhu
,
K.
, and
Liu
,
B.
,
2012
, “
Type Synthesis of Parallel Mechanisms With the First Class GF Sets and Two-Dimensional Rotations
,”
Int. J. Adv. Robot. Syst.
,
9
(
3
), p.
61
.
26.
He
,
J.
,
Gao
,
F.
,
Meng
,
X.
, and
Guo
,
W.
,
2015
, “
Type Synthesis for 4-DOF Parallel Press Mechanism Using GF Set Theory
,”
Chin. J. Mech. Eng.
,
28
(
4
), pp.
851
859
.
27.
Yang
,
T.-L.
,
Liu
,
A.-X.
,
Jin
,
Q.
,
Luo
,
Y.-F.
,
Shen
,
H.-P.
, and
Hang
,
L.-B.
,
2009
, “
Position and Orientation Characteristic Equation for Topological Design of Robot Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021001
.
28.
Jin
,
Q.
, and
Yang
,
T. L.
,
2004
, “
Theory for Topology Synthesis of Parallel Manipulators and Its Application to Three-Dimension-Translation Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
625
639
.
29.
Jin
,
Q.
, and
Yang
,
T. L.
,
2004
, “
Synthesis and Analysis of a Group of 3-Degree-of-Freedom Partially Decoupled Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
301
306
.
30.
Sun
,
T.
,
Yang
,
S.
,
Huang
,
T.
, and
Dai
,
J. S.
,
2017
, “
A Way of Relating Instantaneous and Finite Screws Based on the Screw Triangle Product
,”
Mech. Mach. Theory
,
108
, pp.
75
82
.
31.
Yang
,
S.
,
Sun
,
T.
,
Huang
,
T.
,
Li
,
Q.
, and
Gu
,
D.
,
2016
, “
A Finite Screw Approach to Type Synthesis of Three-DOF Translational Parallel Mechanisms
,”
Mech. Mach. Theory
,
104
, pp.
405
419
.
32.
Yang
,
S.
,
Sun
,
T.
, and
Huang
,
T.
,
2017
, “
Type Synthesis of Parallel Mechanisms Having 3T1R Motion With Variable Rotational Axis
,”
Mech. Mach. Theory
,
109
, pp.
220
230
.
33.
Sun
,
T.
,
Yang
,
S. F.
,
Huang
,
T.
, and
Dai
,
J. S.
,
2018
, “
A Finite and Instantaneous Screw Based Approach for Topology Design and Kinematic Analysis of 5-Axis Parallel Kinematic Machines
,”
Chin. J. Mech. Eng.
,
31
, pp.
1
10
.
34.
Huang
,
Z.
, and
Li
,
Q. C.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Robot. Res.
,
21
(
2
), pp.
131
145
.
35.
Huang
,
Z.
, and
Li
,
Q.
,
2003
, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Robot. Res.
,
22
(
1
), pp.
59
79
.
36.
Zeng
,
D.
, and
Huang
,
Z.
,
2011
, “
Type Synthesis of the Rotational Decoupled Parallel Mechanism Based on Screw Theory
,”
Sci. China Technol. Sci.
,
54
(
4
), pp.
998
1004
.
37.
Fang
,
Y.
, and
Tsai
,
L. W.
,
2004
, “
Analytical Identification of Limb Structures for Translational Parallel Manipulators
,”
J. Robot. Syst.
,
21
(
5
), pp.
209
218
.
38.
Xie
,
F.
,
Liu
,
X. J.
, and
Li
,
T.
,
2013
, “
Type Synthesis and Typical Application of 1T2R-Type Parallel Robotic Mechanisms
,”
Math. Probl. Eng.
,
2013
(
1
), pp.
1
12
.
39.
Xie
,
F.
,
Liu
,
X. J.
,
You
,
Z.
, and
Wang
,
J.
,
2014
, “
Type Synthesis of 2T1R-Type Parallel Kinematic Mechanisms and the Application in Manufacturing
,”
Robot. Comput.-Integr. Manuf.
,
30
(
1
), pp.
1
10
.
40.
Xie
,
F.
,
Li
,
T.
, and
Liu
,
X.
,
2013
, “
Type Synthesis of 4-DOF Parallel Kinematic Mechanisms Based on Grassmann Line Geometry and Atlas Method
,”
Chin. J. Mech. Eng.
,
26
(
6
), pp.
1073
1081
.
41.
Kuo
,
C. H.
, and
Dai
,
J. S.
,
2013
, “
Task-Oriented Structure Synthesis of a Class of Parallel Manipulators Using Motion Constraint Generator
,”
Mech. Mach. Theory
,
70
, pp.
394
406
.
42.
Zhang
,
D.
, and
Gosselin
,
C. M. M.
,
2001
, “
Kinetostatic Modeling of N-DOF Parallel Mechanisms With a Passive Constraining Leg and Prismatic Actuators
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
375
381
.
43.
Yang
,
S.
,
Dai
,
J. S.
,
Jin
,
Y.
, and
Fu
,
R.
,
2022
, “
Finite Displacement Screw-Based Group Analysis of 3PRS Parallel Mechanisms
,”
Mech. Mach. Theory
,
171
, p.
104727
.
44.
Xu
,
Y.
,
Zhang
,
D.
,
Yao
,
J.
, and
Zhao
,
Y.
,
2017
, “
Type Synthesis of the 2R1T Parallel Mechanism With Two Continuous Rotational Axes and Study on the Principle of Its Motion Decoupling
,”
Mech. Mach. Theory
,
108
, pp.
27
40
.
You do not currently have access to this content.