Abstract

Tolerance design is becoming increasingly important for electromechanical products. Reasonable tolerance design can reduce production costs and improve product performance. However, as the complexity of the coupling of tolerances and performance increases, it becomes difficult for designers to establish accurate tolerance design models, leading to experience-based design. This study proposes a novel performance-oriented tolerance design method. First, the main tolerance variables affecting the product performance are rapidly determined based on the proposed locally inferred sensitivity analysis method. Then, based on the improved approximate polynomial chaos expansion, a surrogate model of the product performance and main tolerance variables is established. Finally, the geometric tolerances of the electromechanical products are optimized based on the surrogate model with performance requirements. The proposed tolerance design method is computationally efficient and accurate, and it can be implemented with a small number of samples. To demonstrate its performance, the proposed method is validated with a spaceborne active-phased array antenna. The optimal tolerance design of the antenna for the electrical performance requirements is performed successfully.

References

References
1.
Mansuy
,
M.
,
Giordano
,
M.
, and
Hernandez
,
P.
,
2011
, “
A New Calculation Method for the Worst Case Tolerance Analysis and Synthesis in Stack-Type Assemblies
,”
Comput.-Aided Des.
,
43
(
9
), pp.
1118
1125
. 10.1016/j.cad.2011.04.010
2.
Chavanne
,
R.
, and
Anselmetti
,
B.
,
2012
, “
Functional Tolerancing: Virtual Material Condition on Complex Junctions
,”
Comput. Ind.
,
63
(
3
), pp.
210
221
. 10.1016/j.compind.2011.10.004
3.
Anselmetti
,
B.
,
2006
, “
Generation of Functional Tolerancing Based on Positioning Features
,”
Comput.-Aided Des.
,
38
(
8
), pp.
902
919
. 10.1016/j.cad.2006.05.005
4.
Xu
,
S.
, and
Keyser
,
J.
,
2016
, “
Statistical Geometric Computation on Tolerances for Dimensioning
,”
Comput.-Aided Des.
,
70
, pp.
193
201
. 10.1016/j.cad.2015.06.012
5.
Ruze
,
J.
,
1952
, “
The Effect of Aperture Errors on the Antenna Radiation Pattern
,”
Il Nuovo Cimento
,
9
(
3
), pp.
364
380
. 10.1007/BF02903409
6.
Schmid
,
C. M.
,
Schuster
,
S.
,
Feger
,
R.
, and
Stelzer
,
A.
,
2013
, “
On the Effects of Calibration Errors and Mutual Coupling on the Beam Pattern of an Antenna Array
,”
IEEE Trans. Antennas Propag.
,
61
(
8
), pp.
4063
4072
. 10.1109/TAP.2013.2259455
7.
Jiang
,
C.
,
Han
,
X.
,
Liu
,
G. R.
, and
Liu
,
G. P.
,
2008
, “
A Nonlinear Interval Number Programming Method for Uncertain Optimization Problems
,”
Eur. J. Oper. Res.
,
188
(
1
), pp.
1
13
. 10.1016/j.ejor.2007.03.031
8.
Jiang
,
C.
,
Xie
,
H. C.
,
Zhang
,
Z. G.
, and
Han
,
X.
,
2015
, “
A New Interval Optimization Method Considering Tolerance Design
,”
Eng. Optim.
,
47
(
12
), pp.
1637
1650
. 10.1080/0305215X.2014.982632
9.
Anselmi
,
N.
,
Manica
,
L.
,
Rocca
,
P.
, and
Massa
,
A.
,
2013
, “
Tolerance Analysis of Antenna Arrays Through Interval Arithmetic
,”
IEEE Trans. Antennas Propag.
,
61
(
11
), pp.
5496
5507
. 10.1109/TAP.2013.2276927
10.
Peng
,
X.
,
Wu
,
T.
,
Li
,
J.
,
Jioang
,
S.
,
Qiu
,
C.
, and
Yi
,
B.
,
2017
, “
Hybrid Reliability Analysis With Uncertain Statistical Variables, Sparse Variables and Interval Variables
,”
Eng. Optim.
,
50
, pp.
1347
1363
. 10.1080/0305215x.2017.1400025
11.
Jiang
,
C.
,
Fu
,
C.-M.
,
Ni
,
B.-Y.
, and
Han
,
X.
,
2016
, “
Interval Arithmetic Operations for Uncertainty Analysis With Correlated Interval Variables
,”
Acta Mech. Sin.
,
32
(
4
), pp.
743
752
. 10.1007/s10409-015-0525-3
12.
Saltelli
,
A.
,
2002
, “
Making Best Use of Model Evaluations to Compute Sensitivity Indices
,”
Comput. Phys. Commun.
,
145
(
2
), pp.
280
297
. 10.1016/S0010-4655(02)00280-1
13.
Yun
,
W.
,
Lu
,
Z.
,
Zhang
,
K.
, and
Jiang
,
X.
,
2017
, “
An Efficient Sampling Method for Variance-Based Sensitivity Analysis
,”
Struct. Saf.
,
65
, pp.
74
83
. 10.1016/j.strusafe.2016.12.007
14.
Tian
,
W.
,
Liu
,
S.
, and
Liu
,
X.
,
2017
, “
Accuracy Design of High Precision Machine Tools Using Error Sensitivity Analysis Methodology
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
231
(
18
), pp.
3401
3413
. 10.1177/0954406216645625
15.
Sa
,
G.
,
Liu
,
Z.
,
Qiu
,
C.
, and
Tan
,
J.
,
2019
, “
A Novel Region-Division-Based Tolerance Design Method for a Large Number of Discrete Elements Distributed on a Large Surface
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041701
. 10.1115/1.4041573
16.
Agrawal
,
A. K.
,
Kopp
,
B. A.
,
Luesse
,
M. H.
, and
O’Haver
,
K. W.
,
2001
, “
Active Phased Array Antenna Development for Modern Shipboard Radar Systems
,”
Johns Hopkins APL Tech. Dig.
,
22
(
4
), pp.
600
613
.
17.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
. 10.1115/1.4035860
18.
Hamza
,
K.
, and
Shalaby
,
M.
,
2012
, “
Convex Estimators for Optimization of Kriging Model Problems
,”
ASME J. Mech. Des.
,
134
(
11
), pp.
753
761
. 10.1115/1.4007398
19.
Du
,
J.
, and
Roblin
,
C.
,
2017
, “
Statistical Modeling of Disturbed Antennas Based on the Polynomial Chaos Expansion
,”
IEEE Antennas Wireless Propag. Lett.
,
16
(
99
), pp.
1843
1846
. 10.1109/LAWP.2016.2609739
20.
Palar
,
P. S.
,
Zuhal
,
L. R.
,
Shimoyama
,
K.
, and
Tsuchiya
,
T.
,
2018
, “
Global Sensitivity Analysis via Multi-Fidelity Polynomial Chaos Expansion
,”
Reliab. Eng. Syst. Saf.
,
170
, pp.
175
190
. 10.1016/j.ress.2017.10.013
21.
Der Kiureghian
,
A.
, and
Liu
,
P.-L.
,
1986
, “
Structural Reliability Under Incomplete Probability Information
,”
J. Eng. Mech.
,
112
(
1
), pp.
85
104
. 10.1061/(ASCE)0733-9399(1986)112:1(85)
22.
Rackwitz
,
R.
, and
Flessler
,
B.
,
1978
, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
,
9
(
5
), pp.
489
494
. 10.1016/0045-7949(78)90046-9
23.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Annals Math. Stat.
,
23
(
3
), pp.
470
472
. 10.1214/aoms/1177729394
24.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
John Wiley & Sons
,
West Sussex, UK
.
25.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1
), pp.
271
280
. 10.1016/S0378-4754(00)00270-6
26.
Ishigami
,
T.
, and
Homma
,
T.
,
1990
, “
An Importance Quantification Technique in Uncertainty Analysis for Computer Models
,”
IEEE Computer Society Press
, p.
398
.
27.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
. 10.2307/2371268
28.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
. 10.1137/S1064827501387826
29.
Isukapalli
,
S. S.
,
Roy
,
A.
, and
Georgopoulos
,
P. G.
,
2000
, “
Efficient Sensitivity/Uncertainty Analysis Using the Combined Stochastic Response Surface Method and Automated Differentiation: Application to Environmental and Biological Systems
,”
Risk Anal.
,
20
(
5
), pp.
591
602
. 10.1111/0272-4332.205054
30.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
. 10.1016/j.ress.2007.04.002
31.
Liu
,
S. G.
,
Jin
,
Q.
,
Liu
,
C.
, and
Xie
,
R. J.
,
2013
, “
Analytical Method for Optimal Component Tolerances Based on Manufacturing Cost and Quality Loss
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
227
(
10
), pp.
1484
1491
. 10.1177/0954405413488769
32.
Elliott
,
R.
,
1958
, “
Mechanical and Electrical Tolerances for Two-Dimensional Scanning Antenna Arrays
,”
IRE Trans. Antennas Propag.
,
6
(
1
), pp.
114
120
. 10.1109/TAP.1958.1144549
33.
Davidson
,
J. K.
,
Mujezinović
,
A.
, and
Shah
,
J. J.
,
2002
, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
609
622
. 10.1115/1.1497362
34.
Louhichi
,
B.
,
Tlija
,
M.
,
Benamara
,
A.
, and
Tahan
,
A.
,
2015
, “
An Algorithm for CAD Tolerancing Integration: Generation of Assembly Configurations According to Dimensional and Geometrical Tolerances
,”
Comput.-Aided Des.
,
62
(
8
), pp.
259
274
. 10.1016/j.cad.2014.07.002
35.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
Skin Model Shapes: a new Paradigm Shift for Geometric Variations Modelling in Mechanical Engineering
,”
Comput.-Aided Des.
,
50
, pp.
1
15
. 10.1016/j.cad.2014.01.001
36.
Qiu
,
C.
,
Liu
,
Z.
,
Bu
,
W.
, and
Tan
,
J.
,
2012
, “
Hybrid Dimension Based Modeling of Part Surface Topography and Identification of its Characteristic Parameters
,”
Appl. Surf. Sci.
,
258
(
18
), pp.
7082
7093
. 10.1016/j.apsusc.2012.03.182
37.
Fang
,
G.
,
Liu
,
Z.
,
Sa
,
G.
, and
Tan
,
J.
,
2020
, “
A Position Error Representation Method for Planar Arrays
,”
IEEE Antennas Wireless Propag. Lett.
,
19
(
1
), pp.
109
113
. 10.1109/LAWP.2019.2954954
38.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2013
, “
Separating the Contributions of Variability and Parameter Uncertainty in Probability Distributions
,”
Reliab. Eng. Syst. Saf.
,
112
, pp.
187
199
. 10.1016/j.ress.2012.11.024
39.
Wang
,
P.
,
Lu
,
Z.
, and
Xiao
,
S.
,
2017
, “
A Generalized Separation for the Variance Contributions of Input Variables and Their Distribution Parameters
,”
Appl. Math. Model.
,
47
, pp.
381
399
. 10.1016/j.apm.2017.03.012
40.
Choi
,
W.
, and
Kurfess
,
T. R.
,
1999
, “
Dimensional Measurement Data Analysis, Part 1: A Zone Fitting Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
238
245
. 10.1115/1.2831211
You do not currently have access to this content.