Abstract

Technology adoption in low-income regions is among the key challenges facing international development projects. Nearly 40% of the world's population relies on open fires and rudimentary cooking devices exacerbating health outcomes, deforestation, and climatic impacts of inefficient biomass burning. Clean technology alternatives such as clean cookstoves are among the most challenging technologies to approach their target goals through sustainable adoption due to a lack of systematic market-driven design for adoption. Thus, a method is needed to provide insight regarding how target customers evaluate and perceive causes for adopting a clean technology. The holistic approach of this study captures technology adoption through lenses of social networks, individual and society scale beliefs, and rational decision-making behavior. Based on the data collected in the Apac region in Northern Uganda, an agent-based model is developed to simulate emerging adoption behavior in a community. Then, four different scenarios investigate how adoption patterns change due to the potential changes in technology or intervention strategy. These scenarios include influence of stove malfunctions, price elasticity, information campaigns, and strength of a social network. Results suggest that higher adoption rates are achievable if designed technologies are more durable, information campaigns provide realistic expectations for users, policymakers, and education programs work toward women's empowerment, and communal social ties are recognized for influence maximization. The application of this study provides insight for technology designers, project implementers, and policymakers to update their practices for achieving sustainable and to the scale clean technology adoption rates.

References

References
1.
United Nations
,
2015
,
Transforming Our World: The 2030 Agenda for Sustainable Development
,
UN Publishing
,
New York, NY
.
2.
He
,
L.
,
Wang
,
M.
,
Chen
,
W.
, and
Conzelmann
,
G.
,
2014
, “
Incorporating Social Impact on New Product Adoption in Choice Modeling: A Case Study in Green Vehicles
,”
Transp. Res. Part D Transp. Environ.
,
32
, pp.
421
434
. 10.1016/j.trd.2014.08.007
3.
Macal
,
C. M.
, and
North
,
M. J.
,
2009
, “
Agent-Based Modeling and Simulation
,”
Proceedings of the 2009 Winter Simulation Conference (WSC)
,
Austin, TX
,
Dec. 13–16
, pp.
86
98
.
4.
An
,
L.
,
2012
, “
Modeling Human Decisions in Coupled Human and Natural Systems: Review of Agent-Based Models
,”
Ecol. Modell.
,
229
, pp.
25
36
. 10.1016/j.ecolmodel.2011.07.010
5.
Rogers
,
E. M.
,
2010
,
Diffusion of Innovations
, 4th ed.,
Free Press
,
New York
.
6.
Sahin
,
I.
,
2006
, “
Detailed Review of Rogers’ Diffusion of Innovations Theory and Educational Technology-Related Studies Based on Rogers’ Theory
,”
Turkish Online J. Educ. Technol.
,
5
(
2
), pp.
14
23
.
7.
Weigel
,
F. K.
,
Hazen
,
B. T.
,
Cegielski
,
C. G.
, and
Hall
,
D. J.
,
2014
, “
Diffusion of Innovations and the Theory of Planned Behavior in Information Systems Research: A Metaanalysis
,”
Commun. Assoc. Inf. Syst.
,
34
(
31
), pp.
619
636
. 10.17705/1cais.03431
8.
Davis
,
F. D.
,
1989
, “
Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology
,”
MIS Q.
,
13
(
3
), p.
319
. 10.2307/249008
9.
King
,
W. R.
, and
He
,
J.
,
2006
, “
A Meta-Analysis of the Technology Acceptance Model
,”
Inf. Manag.
,
43
(
6
), pp.
740
755
. 10.1016/j.im.2006.05.003
10.
Hwang
,
Y.
,
Al-Arabiat
,
M.
, and
Shin
,
D.-H.
,
2016
, “
Understanding Technology Acceptance in a Mandatory Environment: A Literature Review
,”
Inf. Dev.
,
32
(
4
).
11.
Venkatesh
,
V.
, and
Davis
,
F. D.
,
2000
, “
A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies
,”
Manage. Sci.
,
46
(
2
), pp.
186
204
. 10.1287/mnsc.46.2.186.11926
12.
Benbasat
,
I.
, and
Barki
,
H.
,
2007
, “
Quo Vadis, TAM?
,”
J. Assoc. Inf. Syst.
,
8
(
4
), pp.
211
218
.
13.
Venkatesh
,
V.
,
Morris
,
M. G.
,
Davis
,
G. B.
, and
Davis
,
F. D.
,
2003
, “
User Acceptance of Information Technology: Toward a Unified View
,”
MIS Q.
,
27
(
3
), p.
425
. 10.2307/30036540
14.
Williams
,
M. D.
,
Rana
,
N. P.
, and
Dwivedi
,
Y. K.
,
2015
, “
The Unified Theory of Acceptance and use of Technology (UTAUT): A Literature Review
,”
J. Enterp. Inf. Manag.
,
28
(
3
), pp.
443
488
. 10.1108/JEIM-09-2014-0088
15.
Ajzen
,
I.
,
1991
, “
The Theory of Planned Behavior
,”
Orgnizational Behav. Hum. Decis. Process.
,
50
(
2
), pp.
179
211
. 10.1016/0749-5978(91)90020-T
16.
Ajzen
,
I.
,
2013
, “Theory of Planned Behaviour Questionnaire. Measurement Instrument Database for the Social Science”.
17.
Lai
,
P. C.
,
2017
, “
The Literature Review of Technology Adoption Models and Theories for the Novelty Technology
,”
J. Inf. Syst. Technol. Manag.
,
14
(
1
), pp.
21
38
.
18.
Kaufmann
,
P.
,
Stagl
,
S.
, and
Franks
,
D. W.
,
2009
, “
Simulating the Diffusion of Organic Farming Practices in Two New EU Member States
,”
Ecol. Econ.
,
68
(
10
), pp.
2580
2593
. 10.1016/j.ecolecon.2009.04.001
19.
Schwarz
,
N.
, and
Ernst
,
A.
,
2009
, “
Agent-based Modeling of the Diffusion of Environmental Innovations—An Empirical Approach
,”
Technol. Forecast. Soc. Change
,
76
(
4
), pp.
497
511
. 10.1016/j.techfore.2008.03.024
20.
Sopha
,
B. M.
,
Klӧckner
,
C. A.
, and
Febrianti
,
D.
,
2017
, “
Using Agent-Based Modeling to Explore Policy Options Supporting Adoption of Natural gas Vehicles in Indonesia
,”
J. Environ. Psychol.
,
52
, pp.
149
165
. 10.1016/j.jenvp.2016.06.002
21.
Zhang
,
T.
, and
Nuttall
,
W. J.
,
2012
, “
An Agent-Based Simulation of Smart Metering Technology Adoption
,”
Int. J. Agent Technol. Syst.
,
4
(
1
), pp.
17
38
. 10.4018/jats.2012010102
22.
Pakravan
,
M. H.
, and
MacCarty
,
N.
,
2020
, “
Design for Clean Technology Adoption: Integration of Usage Context, User Behavior, and Technology Performance in Design
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091402
. 10.1115/1.4046236
23.
Pakravan
,
M. H.
, and
MacCarty
,
N. A.
,
2020
, “
What Motivates Behavior Change? Analyzing User Intentions to Adopt Clean Technologies in Low-Resource Settings Using the Theory of Planned Behavior
,”
Energies.
,
13
(
11
), p.
3021
. 10.3390/en13113021
24.
Kempe
,
D.
,
Kleinberg
,
J.
, and
Tardos
,
É.
,
2005
,
Influential Nodes in a Diffusion Model for Social Networks
,
Springer
,
Berlin Heidelberg
,
1127
1138
.
25.
Kiesling
,
E.
,
Günther
,
M.
,
Stummer
,
C.
, and
Wakolbinger
,
L. M.
,
2012
, “
Agent-based Simulation of Innovation Diffusion: a Review
,”
Cent. Eur. J. Oper. Res.
,
20
(
2
), pp.
183
230
. 10.1007/s10100-011-0210-y
26.
Watts
,
D. J.
, and
Strogatz
,
S. H.
,
1998
, “
Watts−1998-Collective Dynamics of ‘Small-World
,”
Nature
,
393
(
6684
), pp.
440
442
. 10.1038/30918
27.
Ben-Akiva
,
M. E.
, and
Lerman
,
S. R.
,
1985
,
Discrete Choice Analysis: Theory and Application to Travel Demand
,
MIT Press
,
Boston, MA.
28.
Rai
,
V.
, and
Robinson
,
S. A.
,
2015
, “
Agent-based Modeling of Energy Technology Adoption: Empirical Integration of Social, Behavioral, Economic, and Environmental Factors
,”
Environ. Model. Softw.
,
70
, pp.
163
177
. 10.1016/j.envsoft.2015.04.014
29.
Sopha
,
B. M.
,
Klöckner
,
C. A.
, and
Hertwich
,
E. G.
,
2011
, “
Exploring Policy Options for a Transition to Sustainable Heating System Diffusion Using an Agent-Based Simulation
,”
Energy Policy
,
39
(
5
), pp.
2722
2729
. 10.1016/j.enpol.2011.02.041
30.
Shafiei
,
E.
,
Thorkelsson
,
H.
,
Ásgeirsson
,
E. I.
,
Davidsdottir
,
B.
,
Raberto
,
M.
, and
Stefansson
,
H.
,
2012
, “
An Agent-Based Modeling Approach to Predict the Evolution of Market Share of Electric Vehicles: A Case Study From Iceland
,”
Technol. Forecast. Soc. Change
,
79
(
9
), pp.
1638
1653
. 10.1016/j.techfore.2012.05.011
31.
Masad
,
D.
, and
Kazil
,
J.
,
2015
, “
Mesa: An Agent-Based Modeling Framework
,”
14th Python in Science Conference (SCIPY 2015)
, p.
51
.
32.
Jager
,
W.
, and
Janssen
,
M.
,
2012
, “An Updated Conceptual Framework for Integrated Modeling of Human Decision Making: The Consumat II”.
33.
Kempe
,
D.
,
Kleinberg
,
J.
, and
Tardos
,
É.
,
2003
, “
Maximizing the Spread of Influence Through a Social Network
,”
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ‘03
, p.
137
.
34.
Levine
,
D.
,
Cotterman
,
C.
,
Levine
,
D.
, and
Cotterman
,
C.
,
2003
,
Maximizing the Spread of Influence through a Social Network
,
SIGKDD
,
Washington DC
.
35.
Masuda
,
E.
, and
Newman
,
P.
,
1981
, “
Gray and Giffen Goods
,”
Econ. J.
,
91
(
364
), pp.
1011
1014
. 10.2307/2232507
36.
Miller
,
G.
, and
Mushfiq Mobarak
,
A.
,
2013
, “Intra-Household Externalities and Low Demand for a New Technology: Experimental Evidence on Improved Cookstoves,” NBER Work Paper Series, pp.
1
58
.
37.
Adrianzén
,
M. A.
,
2014
, “
Social Capital and Improved Stoves Usage Decisions in the Northern Peruvian Andes
,”
World Dev.
,
54
, pp.
1
17
. 10.1016/j.worlddev.2013.07.004
38.
Ramirez
,
S.
,
Dwivedi
,
P.
,
Ghilardi
,
A.
, and
Bailis
,
R.
,
2014
, “
Diffusion of non-Traditional Cookstoves Across Western Honduras: A Social Network Analysis
,”
Energy Policy
,
66
, pp.
379
389
. 10.1016/j.enpol.2013.11.008
39.
Robins
,
G.
,
2015
,
Doing Social Network Research: Network-Based Research Design for Social Scientists
,
SAGE
,
Los Angeles
.
40.
Hanna
,
R.
,
Duflo
,
E.
, and
Greenstone
,
M.
,
2016
, “
Up in Smoke: The Influence of Household Behavior on the Long-run Impact of Improved Cooking Stoves
,”
Am. Econ. J. Econ. Policy
,
8
(
1
), pp.
80
114
. 10.1257/pol.20140008
41.
Chen
,
W.
,
Collins
,
A
,
Cummings
,
R
, Ke, T., Liu, Z., Rincon, D., Sun, X., Wei, W., Wang, Y., and Yuan, W.
,
2011
, “
Influence Maximization in Social Networks When Negative Opinions May Emerge and Propagate
,”
Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence
,
Boston, MA
,
April
, pp.
379
390
.
42.
North
,
M. J.
, and
Macal
,
C. M.
,
2007
, “ABMS Verification and Validation,”
Managing Business Complexity
,
Oxford University Press
, pp.
221
234
.
You do not currently have access to this content.