Abstract

In the past few decades, multidisciplinary design optimization (MDO) has become a very important research topic along with the increase of the system complexity. In an MDO problem, it is very typical that multiple disciplines are involved, making the problem coupled and complex. Monolithic and distributed architectures have been proposed for solving MDO problems. However, efficient architectures are still needed. In the prior work, a sequential multidisciplinary design optimization (S-MDO) architecture was proposed that has a distributed structure that decomposes the original MDO problem into several subproblems. However, in the original S-MDO work, the theoretical behaviors were not analyzed because its mathematical representations were not clear. In this article, we present a clear mathematical representation of the S-MDO architecture and conduct theoretical analysis on the S-MDO architecture to explain its performance in solving MDO problems. The optimality condition of the S-MDO architecture is derived and summarized as a theorem and a proposition. To demonstrate the general formulation of solving an MDO problem using the S-MDO architecture and validate the correctness of the optimality condition, we use it to obtain the Pareto frontier of a benchmark MDO problem. From the spread of the obtained Pareto frontier, we can conclude that the S-MDO architecture performs well, as long as the global optimum of each disciplinary subproblem can be found.

References

References
1.
Martins
,
J. R.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
. 10.2514/1.J051895
2.
Balesdent
,
M.
,
Bérend
,
N.
,
Dépincé
,
P.
, and
Chriette
,
A.
,
2012
, “
A Survey of Multidisciplinary Design Optimization Methods in Launch Vehicle Design
,”
Struct. Multidiscip. Optim.
,
45
(
5
), pp.
619
642
. 10.1007/s00158-011-0701-4
3.
Braun
,
R.
,
Gage
,
P.
,
Kroo
,
I.
, and
Sobieski
,
I.
,
1996
, “
Implementation and Performance Issues in Collaborative Optimization
,”
6th Symposium on Multidisciplinary Analysis and Optimization
,
Bellevue, WA
,
Sept. 4–6
, p.
4017
.
4.
Alexandrov
,
N. M.
, and
Lewis
,
R. M.
,
1999
,
“Comparative Properties of Collaborative Optimization and Other Approaches to MDO,”NASA Technical Reptort CR-1999-209354, Hampton, VA
.
5.
de Weck
,
O.
,
Agte
,
J.
,
Sobieszczanski-Sobieski
,
J.
,
Arendsen
,
P.
,
Morris
,
A.
, and
Spieck
,
M.
,
2007
, “
State-of-the-Art and Future Trends in Multidisciplinary Design Optimization
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures
,
Honolulu, HI
,
Apr. 23–26
, p.
1905
.
6.
Tosserams
,
S.
,
Etman
,
L. P.
, and
Rooda
,
J.
,
2009
, “
A Classification of Methods for Distributed System Optimization Based on Formulation Structure
,”
Struct. Multidiscip. Optim.
,
39
(
5
), p.
503
. 10.1007/s00158-008-0347-z
7.
Cramer
,
E. J.
,
Dennis
,
J. E., Jr.
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
,
1994
, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
,
4
(
4
), pp.
754
776
. 10.1137/0804044
8.
Balling
,
R. J.
, and
Sobieszczanski-Sobieski
,
J.
,
1996
, “
Optimization of Coupled Systems—A Critical Overview of Approaches
,”
AIAA J.
,
34
(
1
), pp.
6
17
. 10.2514/3.13015
9.
Haftka
,
R. T.
,
1985
, “
Simultaneous Analysis and Design
,”
AIAA J.
,
23
(
7
), pp.
1099
1103
. 10.2514/3.9043
10.
Alexandrov
,
N. M.
, and
Lewis
,
R. M.
,
2002
, “
Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design
,”
AIAA J.
,
40
(
2
), pp.
301
309
. 10.2514/2.1646
11.
Sobieszczanski-Sobieski
,
J.
,
1988
, “
Optimization by Decomposition: A Step From Hierarchic to Non-Hierarchic Systems
,”
2nd NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization
,
Hampton, VA
,
Sept. 28–30
.
12.
Bloebaum
,
C. L.
,
Hajela
,
P.
, and
Sobieszczanski-Sobieski
,
J.
,
1992
, “
Non-Hierarchic System Decomposition in Structural Optimization
,”
Engin. Optim. A35
,
19
(
3
), pp.
171
186
. 10.1080/03052159208941227
13.
Sobieszczanski-Sobieski
,
J.
,
Agte
,
J. S.
, and
Sandusky
,
R. R.
,
2000
, “
Bilevel Integrated System Synthesis
,”
AIAA J.
,
38
(
1
), pp.
164
172
. 10.2514/2.937
14.
Shin
,
M.-K.
, and
Park
,
G.-J.
,
2005
, “
Multidisciplinary Design Optimization Based on Independent Subspaces
,”
Inter. J. Numer. Methods Engin.
,
64
(
5
), pp.
599
617
. 10.1002/nme.1380
15.
Chittick
,
I. R.
, and
Martins
,
J. R.
,
2009
, “
An Asymmetric Suboptimization Approach to Aerostructural Optimization
,”
Optim. Engin.
,
10
(
1
), p.
133
. 10.1007/s11081-008-9046-2
16.
Braun
,
R. D.
,
1997
, “
Collaborative Optimization: An Architecture for Large-Scale Distributed Design
,” Ph.D. Thesis, Stanford University, Stanford, CA.
17.
Haftka
,
R. T.
, and
Watson
,
L. T.
,
2005
, “
Multidisciplinary Design Optimization With Quasiseparable Subsystems
,”
Optim. Engin.
,
6
(
1
), pp.
9
20
. 10.1023/B:OPTE.0000048534.58121.93
18.
DeMiguel
,
V.
, and
Murray
,
W.
,
2006
, “
A Local Convergence Analysis of Bilevel Decomposition Algorithms
,”
Optim. Engin.
,
7
(
2
), pp.
99
133
. 10.1007/s11081-006-6835-3
19.
De Miguel
,
A.-V.
,
2001
,
Two Decomposition Algorithms for Nonconvex Optimization Problems With Global Variables
,
Stanford University
,
Stanford, CA
.
20.
Perez
,
R.
,
Liu
,
H.
, and
Behdinan
,
K.
,
2004
, “
Evaluation of Multidisciplinary Optimization Approaches for Aircraft Conceptual Design
,”
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Albany, NY
,
Aug. 30–Sept. 1
, p.
4537
.
21.
Yi
,
S.-I.
,
Shin
,
J.-K.
, and
Park
,
G.
,
2008
, “
Comparison of MDO Methods With Mathematical Examples
,”
Struct. Multidiscip. Optim.
,
35
(
5
), pp.
391
402
. 10.1007/s00158-007-0150-2
22.
Tedford
,
N. P.
, and
Martins
,
J. R.
,
2010
, “
Benchmarking Multidisciplinary Design Optimization Algorithms
,”
Optim. Engin.
,
11
(
1
), pp.
159
183
. 10.1007/s11081-009-9082-6
23.
Marriage
,
C.
,
2008
,
“Automatic Implementation of Multidisciplinary Design Optimization Architectures Using PiMDO,” M.S. Thesis, University of Toronto, Toronto
.
24.
Roth
,
B.
, and
Kroo
,
I.
,
2008
, “
Enhanced Collaborative Optimization: Application to an Analytic Test Problem and Aircraft Design
,”
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Victoria, British Columbia, Canada
,
Sept. 10–12
, p.
5841
.
25.
Roth
,
B. D.
,
2008
,
Aircraft Family Design Using Enhanced Collaborative Optimization
,
Stanford University
,
Stanford, CA
.
26.
de Wit
,
A.
, and
van Keulen
,
F.
,
2007
, “
Numerical Comparison of Multi-Level Optimization Techniques
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, p.
1895
.
27.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2007
, “
An Augmented Lagrangian Decomposition Method for Quasi-Separable Problems in MDO
,”
Struct. Multidiscip. Optim.
,
34
(
3
), pp.
211
227
. 10.1007/s00158-006-0077-z
28.
Zhou
,
J.
,
Li
,
M.
, and
Xu
,
M.
,
2015
, “
A New Sequential Multi-Disciplinary Optimization Method for Bi-Level Decomposed Systems
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, American Society of Mechanical Engineers, p. V02BT03A031.
29.
Zhou
,
J.
,
Li
,
M.
, and
Xu
,
M.
,
2016
, “
A Novel Sequential Multi-Objective Optimization Using Anchor Points in the Design Space of Global Variables
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121406
. 10.1115/1.4034671
30.
2019
, “
A New Global Solver for Solving Disciplinary Optimization Subproblems in a Multidisciplinary Design Optimization Problem
,”
World Congress of Structural and Multidisciplinary Optimization (WCSMO13)
,
Beijing, China
,
May 20–24
.
31.
Davis
,
L.
,
1991
,
Handbook of Genetic Algorithms
(
VNR computer library
),
Van Nostrand Reinhold
.
32.
Koza
,
J. R.
,
Banzhaf
,
W.
,
Chellapilla
,
K.
,
Kalyanmoy
,
D.
,
Dorigo
,
M.
,
Fogel
,
D. B.
,
Garzon
,
M.
,
Goldberg
,
D.
,
Iba
,
H.
, and
Riolo
,
R.
,
1998
, “
Genetic Programming 1998: Proceedings of the Third Annual Conference
”.
33.
Li
,
M.
,
2007
, “
Robust Optimization and Sensitivity Analysis With Multi-Objective Genetic Algorithms: Single-and Multi-Disciplinary Applications
.”
Tech. rep
.,
Maryland University, College Park, MD
.
34.
Williams
,
N.
,
Azarm
,
S.
, and
Kannan
,
P.
,
2008
, “
Engineering Product Design Optimization for Retail Channel Acceptance
,”
ASME J. Mech. Des.
,
130
(
6
), p.
061402
. 10.1115/1.2898874
You do not currently have access to this content.