Abstract

Design requirements are often uncertain in the early stages of product development. Set-based design is a paradigm for exploring, and keeping under consideration, several alternatives so that commitment to a single design can be delayed until requirements are settled. In addition, requirements may change over the lifetime of a component or a system. Novel manufacturing technologies may enable designs to be remanufactured to meet changed requirements. By considering this capability during the set-based design optimization process, solutions can be scaled to meet evolving requirements and customer specifications even after commitment. Such an ability can also support a circular economy paradigm based on the return of used or discarded components and systems to working condition. We propose a set-based design methodology to obtain scalable optimal solutions that can satisfy changing requirements through remanufacturing. We first use design optimization and surrogate modeling to obtain parametric optimal designs. This set of parametric optimal designs is then reduced to scalable optimal designs by observing a set of transition rules for the manufacturing process used (additive or subtractive). The methodology is demonstrated by means of a structural aeroengine component that is remanufactured by direct energy deposition of a stiffener to meet higher loading requirements.

References

References
1.
Matos
,
S.
, and
Hall
,
J.
,
2007
, “
Integrating Sustainable Development in the Supply Chain: The Case of Life Cycle Assessment in Oil and Gas and Agricultural Biotechnology
,”
J. Oper. Manage.
,
25
(
6
), pp.
1083
1102
. 10.1016/j.jom.2007.01.013
2.
Neto
,
J.
,
Walther
,
G.
,
Bloemhof
,
J.
,
Van Nunen
,
J.
, and
Spengler
,
T.
,
2010
, “
From Closed-loop to Sustainable Supply Chains: The WEEE Case
,”
Int. J. Prod. Res.
,
48
(
15
), pp.
4463
4481
. 10.1080/00207540902906151
3.
Lieder
,
M.
, and
Rashid
,
A.
,
2016
, “
Towards Circular Economy Implementation: A Comprehensive Review in Context of Manufacturing Industry
,”
J. Cleaner. Prod.
,
115
, pp.
36
51
. 10.1016/j.jclepro.2015.12.042
4.
Ellen Macarthur Foundation
,
2012
,
Towards the Circular Economy: An Economic and Business Rationale for an Accelerated Transition, Technical Report
.
5.
Ijomah
,
W.
,
McMahon
,
C.
,
Hammond
,
G.
, and
Newman
,
S.
,
2007
, “
Development of Robust Design-for-Remanufacturing Guidelines to Further the Aims of Sustainable Development
,”
Int. J. Prod. Res.
,
45
(
18–19
), pp.
4513
4536
. 10.1080/00207540701450138
6.
Liu
,
J.
, and
Ma
,
Y.
,
2016
, “
Sustainable Design-Oriented Level Set Topology Optimization
,”
ASME J. Mech. Des.
,
139
(
1
), p.
011403
. 10.1115/1.4035052
7.
Mahadevan
,
B.
,
Pyke
,
D.
, and
Fleischmann
,
M.
,
2003
, “
Periodic Review, Push Inventory Policies for Remanufacturing
,”
Eur. J. Oper. Res.
,
151
(
3
), pp.
536
551
. 10.1016/S0377-2217(02)00627-6
8.
Golinska
,
P.
,
Kosacka
,
M.
,
Mierzwiak
,
R.
, and
Werner-Lewandowska
,
K.
,
2015
, “
Grey Decision Making As a Tool for the Classification of the Sustainability Level of Remanufacturing Companies
,”
J. Cleaner. Prod.
,
105
, pp.
28
40
. 10.1016/j.jclepro.2014.11.040
9.
Van-Thao
,
L.
,
Paris
,
H.
, and
Mandil
,
G.
,
2015
, “
Using Additive and Subtractive Manufacturing Technologies in a New Remanufacturing Strategy to Produce New Parts From End-of-Life Parts
,”
22ème Congrès Français de Mécanique CFM2015
,
Lyon, France
,
Aug. 24–28
.
10.
Song
,
C.
,
Guan
,
X.
,
Zhao
,
Q.
, and
Ho
,
Y.
,
2005
, “
Machine Learning Approach for Determining Feasible Plans of a Remanufacturing System
,”
IEEE Trans. Auto. Sci. Eng.
,
2
(
3
), pp.
262
275
. 10.1109/TASE.2005.849090
11.
Koren
,
Y.
,
Gu
,
X.
,
Badurdeen
,
F.
, and
Jawahir
,
I.
,
2018
, “
Sustainable Living Factories for Next Generation Manufacturing
,”
15th Global Conference on Sustainable Manufacturing
,
Haifa, Israel
,
Sept. 25–27
.
12.
Goodall
,
P.
,
Rosamond
,
E.
, and
Harding
,
J.
,
2014
, “
A Review of the State of the Art in Tools and Techniques Used to Evaluate Remanufacturing Feasibility
,”
J. Cleaner. Prod.
,
81
, pp.
1
15
. 10.1016/j.jclepro.2014.06.014
13.
Lindahl
,
M.
,
Sundin
,
E.
,
Östlin
,
J.
, and
Björkman
,
M.
,
2007
, “Concepts and Definitions for Product Recovery Analysis and Clarification of the Terminology used in Academia and Industry,”
Innovation in Life Cycle Engineering and Sustainable Development
,
D.
Brissaud
,
S.
Tichkiewitch
, and
P.
Zwolinski
, eds.,
Springer Netherlands
,
Dordrecht
, pp.
123
138
.
14.
Thierry
,
M.
,
Salomon
,
M.
,
Van Nunen
,
J.
, and
Van Wassenhove
,
L.
,
1995
, “
Strategic Issues in Product Recovery Management
,”
California Manage. Rev.
,
37
(
2
), pp.
114
136
. 10.2307/41165792
15.
Remanufacturing Industries Council
,
2017
. Specifications for Process of Remanufacturing. Technical Report.
16.
Fricke
,
E.
, and
Schulz
,
A.
,
2005
, “
Design for Changeability (DfC): Principles to Enable Changes in Systems Throughout Their Entire Lifecycle
,”
Syst. Eng.
,
8
(
4
), pp.
342
359
. 10.1002/sys.20039
17.
De Neufville
,
R.
, and
Scholtes
,
S.
,
2011
,
Flexibility in Engineering Design
,
MIT Press
,
London
.
18.
Leino
,
M.
,
Pekkarinen
,
J.
, and
Soukka
,
R.
,
2016
, “
The Role of Laser Additive Manufacturing Methods of Metals in Repair, Refurbishment and Remanufacturing—Enabling Circular Economy
,”
9th International Conference on Photonic Technologies
,
Fürth, Germany
,
Sept. 19–22
.
19.
Kellens
,
K.
,
Baumers
,
M.
,
Gutowski
,
T.
,
Flanagan
,
W.
,
Lifset
,
R.
, and
Duflou
,
J.
,
2017
, “
Environmental Dimensions of Additive Manufacturing: Mapping Application Domains and Their Environmental Implications
,”
J. Ind. Ecology
,
21
(
S1
), pp.
S49
S68
. 10.1111/jiec.12629
20.
Ijomah
,
W. L.
,
2009
, “
Addressing Decision Making for Remanufacturing Operations and Design-for-Remanufacture
,”
Int. J. Sustainable Eng.
,
2
(
2
), pp.
91
102
. 10.1080/19397030902953080
21.
Wilson
,
J. M.
,
Piya
,
C.
,
Shin
,
Y. C.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2014
, “
Remanufacturing of Turbine Blades by Laser Direct Deposition With Its Energy and Environmental Impact Analysis
,”
J. Cleaner. Prod.
,
80
, pp.
170
178
. 10.1016/j.jclepro.2014.05.084
22.
Tang
,
Y.
,
Mak
,
K.
, and
Zhao
,
Y.
,
2016
, “
A Framework to Reduce Product Environmental Impact Through Design Optimization for Additive Manufacturing
,”
J. Cleaner. Prod.
,
137
, pp.
1560
1572
. 10.1016/j.jclepro.2016.06.037
23.
Xing
,
K.
,
Belusko
,
M.
,
Luong
,
L.
, and
Abhary
,
K.
,
2007
, “
An Evaluation Model of Product Upgradeability for Remanufacture
,”
Int. J. Adv. Manuf. Technol.
,
35
(
1–2
), pp.
1
14
. 10.1007/s00170-006-0698-9
24.
Kwak
,
M.
, and
Kim
,
H.
,
2013
, “
Market Positioning of Remanufactured Products with Optimal Planning for Part Upgrades
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011007
. 10.1115/1.4023000
25.
Suh
,
E. S.
,
De Weck
,
O. L.
, and
Chang
,
D.
,
2007
, “
Flexible Product Platforms: Framework and Case Study
,”
Res. Eng. Design
,
18
(
2
), pp.
67
89
. 10.1007/s00163-007-0032-z
26.
Ross
,
A.
,
Rhodes
,
D.
, and
Hastings
,
D.
,
2008
, “
Defining Changeability: Reconciling Flexibility, Adaptability, Scalability, Modifiability, and Robustness for Maintaining System Lifecycle Value
,”
Syst. Eng.
,
11
(
3
), pp.
246
262
. 10.1002/sys.20098
27.
Tackett
,
M. W.
,
Mattson
,
C. A.
, and
Ferguson
,
S. M.
,
2014
, “
A Model for Quantifying System Evolvability Based on Excess and Capacity
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051002
. 10.1115/1.4026648
28.
Olewnik
,
A.
,
Brauen
,
T.
,
Ferguson
,
S.
, and
Lewis
,
K.
,
2004
, “
A Framework for Flexible Systems and Its Implementation in Multiattribute Decision Making
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
412
–419. 10.1115/1.1701874
29.
Liu
,
H.
,
Chen
,
W.
,
Scott
,
M. J.
, and
Qureshi
,
K.
,
2008
, “
Determination of Ranged Sets of Design Specifications by Incorporating Design-space Heterogeneity
,”
Eng. Optim.
,
40
(
11
), pp.
1011
1029
. 10.1080/03052150802378558
30.
Ferguson
,
S.
,
Lewis
,
K.
,
Siddiqi
,
A.
, and
De Weck
,
O. L.
,
2008
, “
Flexible and Reconfigurable Systems: Nomenclature and Review
,”
2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference DETC2007
,
Las Vegas, NV
,
Sept. 4–7
, Vol.
6
PART A, pp.
249
263
.
31.
Yannou
,
B.
,
Simpson
,
T. W.
, and
Barton
,
R. R.
,
2003
, “
Towards a Conceptual Design Explorer Using Metamodeling Approaches and Constraint Programming
,”
Proceedings of the ASME Design Engineering Technical Conference, Vol. 2 Part A of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Sept. 2–6
, pp.
605
614
.
32.
Qureshi
,
A.
,
Dantan
,
J.-Y.
,
Bruyere
,
J.
, and
Bigot
,
R.
,
2014
, “
Set-Based Design of Mechanical Systems with Design Robustness Integrated
,”
Int. J. Product Dev.
,
19
(
1/2/3
), p.
64
. 10.1504/IJPD.2014.060037
33.
Kerga
,
E.
,
Rossi
,
M.
,
Taisch
,
M.
, and
Terzi
,
S.
,
2014
, “
A Serious Game for Introducing Set-Based Concurrent Engineering in Industrial Practices
,”
Concurrent Eng. Res. Appl.
,
22
(
4
), pp.
333
346
. 10.1177/1063293X14550104
34.
Sobek II
,
D.
,
Ward
,
A.
, and
Liker
,
J.
,
1999
, “
Toyota’s Principles of Set-Based Concurrent Engineering
,”
MIT Sloan Manage. Rev.
,
40
(
2
), pp.
67
83
.
35.
Levandowski
,
C.
,
Michaelis
,
M.
, and
Johannesson
,
H.
,
2014
, “
Set-Based Development Using An Integrated Product and Manufacturing System Platform
,”
Cconcurrent Eng. Res. Appl.
,
22
(
3
), pp.
234
252
. 10.1177/1063293X14537654
36.
Carlson
,
J.
, and
Doyle
,
J.
,
2000
, “
Highly Optimized Tolerance: Robustness and Design in Complex Systems
,”
Phys. Rev. Lett.
,
84
(
11
), pp.
2529
2532
. 10.1103/PhysRevLett.84.2529
37.
Nahm
,
Y.
, and
Ishikawa
,
H.
,
2005
, “
Representing and Aggregating Engineering Quantities with Preference Structure for Set-Based Concurrent Engineering
,”
Concurrent Eng. Res. Appl.
,
13
(
2
), pp.
123
133
. 10.1177/1063293X05053797
38.
Gventer
,
G.
, and
Haftka
,
R.
,
1999
, “
Using Response Surface Methodology in Fuzzy Set Based Design Optimization
,”
Struct. Optim.
,
18
(
4
), pp.
1
12
. 10.1007/BF01210686
39.
Kizer
,
J.
, and
Mavris
,
D.
,
2014
, “
Set-Based Design Space Exploration Enabled by Dynamic Constraint Analysis
,”
29th Congress of the International Council of the Aeronautical Sciences (ICAS)
,
St. Petersburg, Russia
,
Sept. 7–12
.
40.
Shahan
,
D.
, and
Seepersad
,
C.
,
2012
, “
Bayesian Network Classifiers for Set-Based Collaborative Design
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071001
. 10.1115/1.4006323
41.
Backlund
,
P.
,
Shahan
,
D.
, and
Seepersad
,
C.
,
2015
, “
Classifier-Guided Sampling for Discrete Variable, Discontinuous Design Space Exploration: Convergence and Computational Performance
,”
Eng. Optim.
,
47
(
5
), pp.
579
600
. 10.1080/0305215X.2014.908869
42.
Rosen
,
D.
,
2015
, “
A Set-Based Design Method for Material-Geometry Structures by Design Space Mapping
,”
2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
1
11
.
43.
Landahl
,
J.
,
Levandowski
,
C.
,
Johannesson
,
H.
, and
Isaksson
,
O.
,
2016
,
Assessing Producibility of Product Platforms Using Set-Based Concurrent Engineering
, Vol.
4
,
IOS Press
,
Amsterdam
, pp.
35
44
.
44.
Wang
,
J.
, and
Terpenny
,
J.
,
2003
, “
Interactive Evolutionary Solution Synthesis in Fuzzy Set-Based Preliminary Engineering Design
,”
J. Intell. Manuf.
,
14
(
2
), pp.
153
167
. 10.1023/A:1022947329200
45.
Doerry
,
N.
,
Earnesty
,
M.
,
Weaver
,
C.
,
Banko
,
J.
,
Myers
,
J.
,
Browne
,
D.
,
Hopkins
,
M.
, and
Balestrini
,
S.
,
2014
, “
Using Set-Based Design in Concept Exploration
,”
NAME Chesapeake Section Technical Meeting, Army Navy Country Club
,
1
(
5
), pp.
1
8
.
46.
Malak
,
R.
,
Aughenbaugh
,
J.
, and
Paredis
,
C.
,
2009
, “
Multi-Attribute Utility Analysis in Set-Based Conceptual Design
,”
CAD Comput. Aided Design
,
41
(
3
), pp.
214
227
. 10.1016/j.cad.2008.06.004
47.
Avigad
,
G.
, and
Moshaiov
,
A.
,
2009
, “
Set-Based Concept Selection in Multi-objective Problems: Optimality Versus Variability Approach
,”
J. Eng. Design
,
20
(
3
), pp.
217
242
. 10.1080/09544820701802279
48.
Miller
,
S. W.
,
Yukish
,
M. A.
, and
Simpson
,
T. W.
,
2018
, “
Design As a Sequential Decision Process: A Method for Reducing Design Set Space Using Models to Bound Objectives
,”
Struct. Multidiscipl. Optim.
,
57
(
1
), pp.
305
324
. 10.1007/s00158-017-1756-7
49.
Hannapel
,
S.
, and
Vlahopoulos
,
N.
,
2014
, “
Implementation of Set-Based Design in Multidisciplinary Design Optimization
,”
Struct. Multidiscipl. Optim.
,
50
(
1
), pp.
101
112
. 10.1007/s00158-013-1034-2
50.
Athan
,
T.
, and
Papalambros
,
P.
,
1996
, “
A Note on Weighted Criteria Methods for Compromise Solutions in Multi-Objective Optimization
,”
Eng. Optim.
,
27
(
2
), pp.
155
176
. 10.1080/03052159608941404
51.
Ge
,
P.
,
Lu
,
S.
, and
Bukkapatnam
,
S.
,
2005
, “
Supporting Negotiations in the Early Stage of Large-Scale Mechanical System Design
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1056–1067
. 10.1115/1.1862675
52.
Taguchi
,
G.
,
1987
,
System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Cost
,
UNIPUB/Kraus International Publications
,
White Plains
.
53.
Talgorn
,
B.
,
Audet
,
C.
,
Le Digabel
,
S.
, and
Kokkolaras
,
M.
,
2018
, “
Locally Weighted Regression Models for Surrogate-Assisted Design Optimization
,”
Optim. Eng.
,
19
(
1
), pp.
213
238
. 10.1007/s11081-017-9370-5
54.
Lophaven
,
S.
,
Nielsen
,
H.
, and
Søndergaard
,
J.
,
2002
, DACE—A Matlab Kriging Toolbox, Version 2.0.
55.
Audet
,
C.
,
Kokkolaras
,
M.
,
Le Digabel
,
S.
, and
Talgorn
,
B.
,
2018
, “
Order-Based Error for Managing Ensembles of Surrogates in Mesh Adaptive Direct Search
,”
J. Global Optim.
,
70
(
3
), pp.
645
675
. 10.1007/s10898-017-0574-1
56.
Sobieszczanski-Sobieski
,
J.
,
Barthelemyy
,
J.-F.
, and
Riley
,
K.
,
1982
, “
Sensitivity of Optimum Solutions to Problem Parameters
,”
AIAA J.
,
20
(
9
), pp.
1291
1299
. 10.2514/3.51191
57.
McKay
,
M.
,
Beckman
,
R.
, and
Conover
,
W.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
. 10.1080/00401706.1979.10489755
58.
Loeppky
,
J.
,
Sacks
,
J.
,
Welch
,
W.
, and
Welch
,
W.
,
2008
,
Choosing the Sample Size of a Computer Experiment: A Practical Guide
. Technical Report,
National Institute of Statistical Sciences
.
59.
Mukherjee
,
T.
,
Zhang
,
W.
, and
DebRoy
,
T.
,
2017
, “
An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing
,”
Comput. Mater. Sci.
,
126
, pp.
360
372
. 10.1016/j.commatsci.2016.10.003
60.
Manvatkar
,
V. D.
,
Gokhale
,
A. A.
,
Jagan Reddy
,
G.
,
Venkataramana
,
A.
, and
De
,
A.
,
2011
, “
Estimation of Melt Pool Dimensions, Thermal Cycle, and Hardness Distribution in the Laser-Engineered Net Shaping Process of Austenitic Stainless Steel
,”
Metall. Mater. Trans. A.
,
42
(
13
), pp.
4080
4087
. 10.1007/s11661-011-0787-8
61.
Rosenthal
,
D.
,
1946
,
The Theory of Moving Sources of Heat and its Application to Metal Treatments
,
ASME
,
Cambridge
.
62.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metallur. Trans. B
,
15
(
2
), pp.
299
305
. 10.1007/BF02667333
63.
Nickel
,
A. H.
,
Barnett
,
D. M.
, and
Prinz
,
F. B.
,
2001
, “
Thermal Stresses and Deposition Patterns in Layered Manufacturing
,”
Mater. Sci. Eng. A.
,
317
(
1–2
), pp.
59
64
. 10.1016/S0921-5093(01)01179-0
64.
Budynas
,
R. G.
,
Nisbett
,
J. K.
, and
Shigley
,
J. E.
,
2015
,
Shigley’s Mechanical Engineering Design
, 10th ed.,
McGraw-Hill Education
,
New York
.
65.
Le Digabel
,
S.
,
2011
, “
Algorithm 909
,”
ACM Trans. Math. Software
,
37
(
4
), pp.
1
15
. 10.1145/1916461.1916468
66.
Audet
,
C.
, and
Dennis
,
J. E.
,
2006
, “
Mesh Adaptive Direct Search Algorithms for Constrained Optimization
,”
SIAM J. Optim.
,
17
(
1
), pp.
188
217
. 10.1137/040603371
67.
Barber
,
C.
,
Dobkin
,
D.
, and
Huhdanpaa
,
H.
,
2002
, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Trans. Math. Software
,
22
(
4
), pp.
469
483
. 10.1145/235815.235821
68.
Brown
,
N.
, and
Mueller
,
C.
,
2019
, “
Quantifying Diversity in Parametric Design: A Comparison of Possible Metrics
,”
Artificial Intell. Eng. Design, Analysis Manufact.
,
33
(
1
), pp.
40
53
. 10.1017/S0890060418000033
You do not currently have access to this content.