Abstract

This article presents a novel mode-pursuing sampling method using discriminative coordinate perturbation (MPS-DCP) to further improve the convergence performance of solving high-dimensional, expensive, and black-box (HEB) problems. In MPS-DCP, a discriminative coordinate perturbation strategy is integrated into the original mode-pursuing sampling (MPS) framework for sequential sampling. During optimization, the importance of variables is defined by approximated global sensitivities, while the perturbation probabilities of variables are dynamically adjusted according to the number of optimization stalling iterations. Expensive points considering both optimality and space-filling property are selected from cheap points generated by perturbing the current best point, which balances between global exploration and local exploitation. The convergence property of MPS-DCP is theoretically analyzed. The performance of MPS-DCP is tested on several numerical benchmarks and compared with state-of-the-art metamodel-based design optimization methods for HEB problems. The results indicate that MPS-DCP generally outperforms the competitive methods regarding convergence and robustness performances. Finally, the proposed MPS-DCP is applied to a stepped cantilever beam design optimization problem and an all-electric satellite multidisciplinary design optimization (MDO) problem. The results demonstrate that MPS-DCP can find better feasible optima with the same or less computational cost than the competitive methods, which demonstrates its effectiveness and practicality in solving real-world engineering problems.

References

References
1.
Simpson
,
T. W.
,
Booker
,
A. J.
,
Ghosh
,
D.
,
Giunta
,
A. A.
,
Koch
,
P. N.
, and
Yang
,
R.-J.
,
2004
, “
Approximation Methods in Multidisciplinary Analysis and Optimization: A Panel Discussion
,”
Struct. Multidisp. Optim.
,
27
(
5
), pp.
302
313
. 10.1007/s00158-004-0389-9
2.
Long
,
T.
,
Liu
,
J.
,
Wang
,
G. G.
,
Liu
,
L.
,
Shi
,
R.
, and
Guo
,
X.
,
2016
, “
Discuss on Approximate Optimization Strategies Using Design of Computer Experiments and Metamodels for Flight Vehicle Design
,”
Chin. J. Mech. Eng.
,
52
(
14
), pp.
79
105
. 10.3901/JME.2016.14.079
3.
Yondo
,
R.
,
Andrés
,
E.
, and
Valero
,
E.
,
2018
, “
A Review on Design of Experiments and Surrogate Models in Aircraft Real-Time and Many-Query Aerodynamic Analyses
,”
Prog. Aerosp. Sci.
,
96
, pp.
23
61
. 10.1016/j.paerosci.2017.11.003
4.
Chen
,
S.
,
Jiang
,
Z.
,
Yang
,
S.
, and
Chen
,
W.
,
2016
, “
Multimodel Fusion Based Sequential Optimization
,”
AIAA J.
,
55
(
1
), pp.
1
14
. 10.2514/1.J054729
5.
Zhang
,
Y.
,
Kim
,
N. H.
,
Park
,
C.
, and
Haftka
,
R. T.
,
2018
, “
Multifidelity Surrogate Based on Single Linear Regression
,”
AIAA J.
,
56
(
12
), pp.
1
9
. 10.2514/1.J057299
6.
Zimmermann
,
R.
,
2013
, “
Gradient-Enhanced Surrogate Modeling Based on Proper Orthogonal Decomposition
,”
J. Comput. Appl. Math.
,
237
(
1
), pp.
403
418
. 10.1016/j.cam.2012.06.010
7.
Viana
,
F. A. C.
,
Haftka
,
R. T.
, and
Steffen
,
V.
,
2009
, “
Multiple Surrogates: How Cross-Validation Errors Can Help Us to Obtain the Best Predictor
,”
Struct. Multidisp. Optim.
,
39
(
4
), pp.
439
457
. 10.1007/s00158-008-0338-0
8.
Palar
,
P. S.
, and
Shimoyama
,
K.
,
2019
, “
Efficient Global Optimization With Ensemble and Selection of Kernel Functions for Engineering Design
,”
Struct. Multidisp. Optim.
,
59
(
1
), pp.
93
116
. 10.1007/s00158-018-2053-9
9.
Han
,
Z.
,
Zhang
,
Y.
,
Song
,
C.
, and
Zhang
,
K.
,
2017
, “
Weighted Gradient-Enhanced Kriging for High-Dimensional Surrogate Modeling and Design Optimization
,”
AIAA J.
,
55
(
12
), pp.
1
17
. 10.2514/1.J055842
10.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Glob. Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
11.
Peng
,
L.
,
Liu
,
L.
,
Long
,
T.
, and
Yang
,
W.
,
2014
, “
An Efficient Truss Structure Optimization Framework Based on CAD/CAE Integration and Sequential Radial Basis Function Metamodel
,”
Struct. Multidisp. Optim.
,
50
(
2
), pp.
329
346
. 10.1007/s00158-014-1050-x
12.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2017
, “
Remarks on Multi-Fidelity Surrogates
,”
Struct. Multidisp. Optim.
,
55
(
3
), pp.
1029
1050
. 10.1007/s00158-016-1550-y
13.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
,
Wu
,
Y.
, and
Tang
,
Y.
,
2018
, “
Filter-Based Sequential Radial Basis Function Method for Spacecraft Multidisciplinary Design Optimization
,”
AIAA J.
,
57
(
3
), pp.
1
13
. 10.2514/1.J057403
14.
Wang
,
L.
,
Shan
,
S.
, and
Wang
,
G. G.
,
2004
, “
Mode-Pursuing Sampling Method for Global Optimization on Expensive Black-Box Functions
,”
Eng. Optim.
,
36
(
4
), pp.
419
438
. 10.1080/03052150410001686486
15.
Kazemi
,
M.
,
Wang
,
G. G.
,
Rahnamayan
,
S.
, and
Gupta
,
K.
,
2010
, “
Constraint Importance Mode Pursuing Sampling for Continuous Global Optimization
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, QC, Canada
,
Aug. 15–18
, pp.
325
334
.
16.
Sharif
,
B.
,
Wang
,
G. G.
, and
ElMekkawy
,
T. Y.
,
2008
, “
Mode Pursuing Sampling Method for Discrete Variable Optimization on Expensive Black-Box Functions
,”
ASME J. Mech. Des.
,
130
(
2
), p.
021402
. 10.1115/1.2803251
17.
Cai
,
X.
,
Qiu
,
H.
,
Gao
,
L.
, and
Shao
,
X.
,
2017
, “
Metamodeling for High Dimensional Design Problems by Multi-Fidelity Simulations
,”
Struct. Multidisp. Optim.
,
56
(
1
), pp.
151
166
. 10.1007/s00158-017-1655-y
18.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design via Surrogate Modelling: A Practical Guide
,
John Wiley & Sons
,
Chichester
.
19.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
, and
Liu
,
J.
,
2016
, “
Sequential Radial Basis Function Using Support Vector Machine for Expensive Design Optimization
,”
AIAA J.
,
55
(
1
), pp.
214
227
. 10.2514/1.J054832
20.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
,
Wu
,
Y.
, and
Tang
,
Y.
,
2019
, “
Filter-Based Adaptive Kriging Method for Black-Box Optimization Problems With Expensive Objective and Constraints
,”
Comput. Method. Appl. Mech. Eng.
,
347
, pp.
782
805
. 10.1016/j.cma.2018.12.026
21.
Long
,
T.
,
Wu
,
D.
,
Guo
,
X.
,
Wang
,
G. G.
, and
Liu
,
L.
,
2015
, “
Efficient Adaptive Response Surface Method Using Intelligent Space Exploration Strategy
,”
Struct. Multidisp. Optim.
,
51
(
6
), pp.
1335
1362
. 10.1007/s00158-014-1219-3
22.
Cheng
,
G. H.
,
Younis
,
A.
,
Hajikolaei
,
K. H.
, and
Wang
,
G. G.
,
2015
, “
Trust Region Based Mode Pursuing Sampling Method for Global Optimization of High Dimensional Design Problems
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021407
. 10.1115/1.4029219
23.
Duan
,
X.
,
Wang
,
G. G.
,
Kang
,
X.
,
Niu
,
Q.
,
Naterer
,
G.
, and
Peng
,
Q.
,
2009
, “
Performance Study of Mode-Pursuing Sampling Method
,”
Eng. Optim.
,
41
(
1
), pp.
1
21
. 10.1080/03052150802345995
24.
Hajikolaei
,
K. H.
,
Cheng
,
G. H.
, and
Wang
,
G. G.
,
2016
, “
Optimization on Metamodeling-Supported Iterative Decomposition
,”
ASME J. Mech. Des.
,
138
(
2
), p.
11
. 10.1115/1.4031982
25.
Regis
,
R. G.
, and
Shoemaker
,
C. A.
,
2013
, “
Combining Radial Basis Function Surrogates and Dynamic Coordinate Search in High-Dimensional Expensive Black-Box Optimization
,”
Eng. Optim.
,
45
(
5
), pp.
529
555
. 10.1080/0305215X.2012.687731
26.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
John Wiley & Sons
,
Chichester
.
27.
Xin
,
B.
, and
Chen
,
J.
,
2017
,
Intelligent Optimization Methods for Solving Complex Optimization Problems
,
Beijing Institute of Technology Press
,
Beijing
,
(in Chinese)
.
28.
Fletcher
,
R.
,
Leyffer
,
S.
,
Ralph
,
D.
, and
Scholtes
,
S.
,
2006
, “
Local Convergence of SQP Methods for Mathematical Programs With Equilibrium Constraints
,”
SIAM J. Optim.
,
17
(
1
), pp.
259
286
. 10.1137/S1052623402407382
29.
Mueller
,
J.
,
2016
, “
User Guide for DYCORS Algorithm- MATLAB
,” https://ccse.lbl.gov/people/julianem/Manual_DYCORS_matlab.pdf, Accessed January 19, 2017.
30.
Surjanovic
,
S.
, and
Bingham
,
D.
,
2016
, “
Virtual Library of Simulation Experiments: Test Functions and Datasets
,” https://www.sfu.ca/~ssurjano/index.html, Accessed January 15, 2015.
31.
Regis
,
R. G.
,
2014
, “
Constrained Optimization by Radial Basis Function Interpolation for High-Dimensional Expensive Black-Box Problems With Infeasible Initial Points
,”
Eng. Optim.
,
46
(
2
), pp.
218
243
. 10.1080/0305215X.2013.765000
32.
Dong
,
H.
,
Song
,
B.
,
Dong
,
Z.
, and
Wang
,
P.
,
2018
, “
SCGOSR: Surrogate-Based Constrained Global Optimization Using Space Reduction
,”
Appl. Soft Comput.
,
65
, pp.
462
477
. 10.1016/j.asoc.2018.01.041
33.
Qian
,
J.
,
Yi
,
J.
,
Cheng
,
Y.
,
Liu
,
J.
, and
Zhou
,
Q.
,
2020
, “
A Sequential Constraints Updating Approach for Kriging Surrogate Model-Assisted Engineering Optimization Design Problem
,”
Eng. Comput.
,
36
, pp.
993
1009
. 10.1007/s00366-019-00745-w
34.
Hajikolaei
,
K. H.
,
Pirmoradi
,
Z.
,
Cheng
,
G. H.
, and
Wang
,
G. G.
,
2015
, “
Decomposition for Large-Scale Global Optimization Based on Quantified Variable Correlations Uncovered by Metamodelling
,”
Eng. Optim.
,
47
(
4
), pp.
429
452
. 10.1080/0305215X.2014.895338
35.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
,
Liu
,
J.
, and
Yuan
,
B.
,
2017
, “
Surrogate Assisted Multidisciplinary Design Optimization for an All-Electric GEO Satellite
,”
Acta Astronaut.
,
138
, pp.
301
317
. 10.1016/j.actaastro.2017.05.032
36.
Product Design and Optimization Laboratory
,
2019
, “
Mode Pursuing Sampling (MPS) Method
,” http://www.sfu.ca/~gwa5/software.html, Accessed May 4, 2016.
37.
Schittkowski
,
K.
,
2012
,
More Test Examples for Nonlinear Programming Codes
,
Springer Science & Business Media
,
New York
.
You do not currently have access to this content.