The evaluation and representation of the orientation workspace of robotic manipulators is a challenging task. This work focuses on the determination of the theoretical orientation workspace of the Gough–Stewart platform with given leg length ranges [ρimin,ρimax]. By use of the roll-pitch-yaw angles (ϕ,θ,ψ), the theoretical orientation workspace at a prescribed position P0 can be defined by up to 12 workspace surfaces. The defined orientation workspace is a closed region in the 3D orientation Cartesian space Oϕθψ. As all rotations R(x,ϕ), R(y,θ), and R(z,ψ) take place with respect to the fixed frame, any point of the defined orientation workspace provides a clear measure for the platform to, respectively, rotate in order around the (x,y,z) axes of the fixed frame. An algorithm is presented to compute the size (volume) of the theoretical orientation workspace and intersectional curves of the workspace surfaces. The defined theoretical orientation workspace can be applied to determine a singularity-free orientation workspace.

1.
Jiang
,
Q.
, and
Gosselin
,
C.
, 2008, “
Singularity Equations of Gough–Stewart Platforms Using a Minimal Set of Geometric Parameters
,”
ASME J. Mech. Des.
1050-0472,
130
(
11
), p.
112003
.
2.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Behhabid
,
B.
, 1994, “
Singularity Analysis of Mechanisms and Robots via a Velocity-Equation Model of the Instantaneous Kinematics
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, San Diego, CA, pp.
986
991
.
3.
Hunt
,
K. H.
, and
McAree
,
P. R.
, 1998, “
The Octahedral Manipulator: Geometry and Mobility
,”
Int. J. Robot. Res.
0278-3649,
17
(
8
), pp.
868
885
.
4.
Mayer-St-Onge
,
B.
, and
Gosselin
,
C.
, 2000, “
Singularity Analysis and Representation of the General Gough–Stewart Platform
,”
Int. J. Robot. Res.
0278-3649,
19
(
3
), pp.
271
288
.
5.
Merlet
,
J. -P.
, and
Daney
,
D.
, 2001, “
A Formal-Numerical Approach to Determine the Presence of Singularity Within the Workspace of a Parallel Robot
,”
Proceedings of the International Workshop on Computational Kinematics
, Seoul, May 20–22, pp.
167
176
.
6.
Li
,
H.
,
Gosselin
,
C.
, and
Richard
,
M.
, 2007, “
Determination of the Maximal Singularity-Free Zones in the Six-Dimensional Workspace of the General Gough–Stewart Platform
,”
Mech. Mach. Theory
0094-114X,
42
(
4
), pp.
497
511
.
7.
Jiang
,
Q.
, and
Gosselin
,
C.
, 2008, “
The Maximal Singularity-Free Workspace of the Gough–Stewart Platform for a Given Orientation
,”
ASME J. Mech. Des.
1050-0472,
130
(
11
), p.
112304
.
8.
Fichter
,
E. F.
, 1986, “
A Stewart Platform-Based Manipulator: General Theory and Practical Construction
,”
Int. J. Robot. Res.
0278-3649,
5
(
2
), pp.
157
182
.
9.
Gosselin
,
C.
, 1990, “
Determination of the Workspace of 6-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
112
, pp.
331
336
.
10.
Jiang
,
Q.
, and
Gosselin
,
C.
, 2008, “
Geometric Optimization of Planar 3-RPR Parallel Mechanisms
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
31
(
4
), pp.
457
468
.
11.
Merlet
,
J. P.
, 1994, “
Trajectory Verification in the Workspace for Parallel Manipulator
,”
Int. J. Robot. Res.
0278-3649,
13
(
4
), pp.
326
333
.
12.
McAree
,
P. R.
, and
Daniel
,
R. W.
, 1999, “
An Explanation of Never-Special Assembly Changing Motions for 3-3 Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
18
(
6
), pp.
556
574
.
13.
Merlet
,
J. P.
, 1999, “
Determination of 6D Workspaces of Gough-Type Parallel Manipulator and Comparison Between Different Geometrics
,”
Int. J. Robot. Res.
0278-3649,
18
(
9
), pp.
902
916
.
14.
Pernkopf
,
F.
, and
Husty
,
M.
, 2006, “
Workspace Analysis of Stewart–Gough-Type Parallel Manipulators
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
220
(
7
), pp.
1019
1032
. 0954-4062
15.
Bonev
,
I. A.
,
Zlatanov
,
D.
, and
Gosselin
,
C.
, 2002, “
Advantages of the Modified Euler Angles in the Design and Control of PKMs
,”
Proceedings of the Third Chemnitz Parallel Kinematics Seminar, Parallel Kinematic Machines International Conference
, Chemnitz, Germany, Apr. 23–25, pp.
171
187
.
16.
Romdhane
,
L.
, 1994, “
Orientation Workspace of Fully Parallel Mechanisms
,”
Eur. J. Mech. A/Solids
0997-7538,
13
(
4
), pp.
541
553
.
17.
Merlet
,
J. -P.
, 1995, “
Determination of the Orientation Workspace of Parallel Manipulators
,”
J. Intell. Robot. Syst.
,
13
, pp.
143
160
. 0921-0296
18.
Bonev
,
I.
, and
Ryu
,
J.
, 2001, “
A New Approach to Orientation Workspace Analysis of 6-DOF Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
36
, pp.
15
28
.
19.
Bonev
,
I.
, and
Gosselin
,
C.
, 2006, “
Analytical Determination of the Workspace of Symmetrical Spherical Parallel Mechanism
,”
IEEE Trans. Rob. Autom.
,
22
(
5
), pp.
1011
1017
. 1546-1904
20.
Lee
,
S. H.
,
Song
,
J. B.
,
Choi
,
W. C.
, and
Hong
,
D.
, 2002, “
Workspace and Force-Moment Transmission of a Variable Arm Type Parallel Manipulator
,”
Proceedings of the 2002 IEEE International Conference on Robotics & Automation
, Washington, DC, pp.
3666
3671
.
21.
Yang
,
G.
,
Lin
,
W.
,
Mustafa
,
S. K.
,
Chen
,
I. M.
, and
Yeo
,
S. H.
, 2006, “
Numerical Orientation Workspace Analysis With Different Parameterization Methods
,”
IEEE Conference on Robotics, Automation and Mechatronics
, Bangkok, Thailand.
22.
Yang
,
G. L.
,
Ho
,
H. L.
,
Lin
,
W.
, and
Chen
,
I. M.
, 2004, “
A Differential Geometry Approach for the Workspace Analysis of Spherical Parallel Manipulators
,”
11th World Congress in Mechanism and Machine Science
, Tianjin, China, Apr. 1–4, Vol.
4
, pp.
2060
2065
.
23.
Tsai
,
K. Y.
, and
Lin
,
J. C.
, 2006, “
Determining the Compatible Orientation Workspace of Stewart–Gough Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
41
(
10
), pp.
1168
1184
.
24.
Chen
,
C. -Y.
, and
Fu
,
L. -C.
, 1999, “
5D Target Trajectory Detection via Intelligent Monocular Visual Tracking System in Real-Time With Air-Target Orientation Recognition
,”
Proceedings of the American Control Conference
, San Diego, CA, Jun., pp.
363
367
.
25.
Rosborough
,
G.
,
Baldwin
,
D.
, and
Emery
,
W.
, 1994, “
Precise AVHRR Image Navigation
,”
IEEE Trans. Geosci. Remote Sens.
,
32
(
3
), pp.
644
657
. 0196-2892
26.
Martinez-de Dios
,
J. R.
,
Arrue
,
B. C.
,
Ollero
,
A.
,
Merino
,
L.
, and
Gomez-Rodriguez
,
F.
, 2008, “
Computer Vision Techniques for Forest Fire Perception
,”
Image Vis. Comput.
,
26
, pp.
550
562
. 0262-8856
27.
Kim
,
D.
, and
Chung
,
W.
, 1999, “
Analytic Singularity Equation and Analysis of Six-DOF Parallel Manipulators Using Local Structurization Method
,”
IEEE Trans. Robot. Autom.
,
15
(
4
), pp.
612
622
. 1042-296X
28.
Jiang
,
Q.
, and
Gosselin
,
C.
, 2008, “Determination of the Maximal Singularity-Free Orientation Workspace for the Gough–Stewart Platform,” Mechanisms and Machine Theory, doi:10.1016/j.mechmachtheory.2008.07.005.
You do not currently have access to this content.