Miniature robots have many applications ranging from military surveillance to search and rescue in disaster areas. Nevertheless, the fabrication of such robots has traditionally been labor-intensive and time-consuming. This paper proposes to directly leverage multimaterial 3D printing (MM3P) to fabricate centimeter-scale robots by utilizing soft materials to create not only soft joints to replace revolute joints but also soft links to replace rigid links. We demonstrate the capability of MM3P by creating a miniature, four-legged walking robot. Moreover, we leverage a three-spring rotational-prismatic-rotational (RPR) model to approximate the motion of soft joints or links, which is further utilized to numerically predict the motion of the leg mechanism with multiple soft joints and links. The accuracy of the proposed numerical method is validated with experimental results, and outperforms the results from using a psuedorigid-body (PRB) 1R model to approximate the motion of soft joints/links of the same mechanism. Meanwhile, a functional walking robot actuated by a single DC motor is demonstrated with a locomotion speed of 5.7 cm/s. We envision that the concept of employing both soft joints and links will inspire the design and realization of novel miniature mechanisms for a wide range of applications including robotics, deployable structures, or mechanical metamaterials. The proposed numerical method can also be readily applied to analyze other mechanisms with soft joints and links.

References

1.
Zhao
,
J.
,
Xu
,
J.
,
Gao
,
B.
,
Xi
,
N.
,
Cintron
,
F.
,
Mutka
,
M.
, and
Xiao
,
L.
,
2013
, “
MSU Jumper: A Single-Motor-Actuated Miniature Steerable Jumping Robot
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
602
614
.
2.
Hoover
,
A. M.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2008
, “
RoACH: An Autonomous 2.4 g Crawling Hexapod Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Nice, France, Sept. 22–26, pp.
26
33
.
3.
Kohut
,
N. J.
,
Hoover
,
A. M.
,
Ma
,
K. Y.
,
Baek
,
S. S.
, and
Fearing
,
R. S.
,
2011
, “
MEDIC: A Legged Millirobot Utilizing Novel Obstacle Traversal
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
802
808
.
4.
Birkmeyer
,
P.
,
Peterson
,
K.
, and
Fearing
,
R. S.
,
2009
, “
DASH: A Dynamic 16 g Hexapedal Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), St. Louis, MO, Oct. 10–15, pp.
2683
2689
.
5.
Baisch
,
A. T.
,
Ozcan
,
O.
,
Goldberg
,
B.
,
Ithier
,
D.
, and
Wood
,
R. J.
,
2014
, “
High Speed Locomotion for a Quadrupedal Microrobot
,”
Int. J. Rob. Res.
,
33
(
8
), pp.
1063
1082
.
6.
Pierre
,
R. S.
, and
Bergbreiter
,
S.
,
2017
, “
Gait Exploration of Sub-2 g Robots Using Magnetic Actuation
,”
IEEE Rob. Autom. Lett.
,
2
(
1
), pp.
34
40
.
7.
Wood
,
R.
,
Avadhanula
,
S.
,
Sahai
,
R.
,
Steltz
,
E.
, and
Fearing
,
R.
,
2008
, “
Microrobot Design Using Fiber Reinforced Composites
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052304
.
8.
Cutkosky
,
M. R.
, and
Kim
,
S.
,
2009
, “
Design and Fabrication of Multi-Material Structures for Bioinspired Robots
,”
Philos. Trans. R. Soc. London A
,
367
(
1894
), pp.
1799
1813
.
9.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2006
, “
A Robust Compliant Grasper Via Shape Deposition Manufacturing
,”
IEEE/ASME Trans. Mechatronics
,
11
(
2
), pp.
154
161
.
10.
Kim
,
S.
,
Clark
,
J. E.
, and
Cutkosky
,
M. R.
,
2006
, “
iSprawl: Design and Tuning for High-Speed Autonomous Open-Loop Running
,”
Int. J. Rob. Res.
,
25
(
9
), pp.
903
912
.
11.
Bejgerowski
,
W.
,
Gerdes
,
J. W.
,
Gupta
,
S. K.
, and
Bruck
,
H. A.
,
2011
, “
Design and Fabrication of Miniature Compliant Hinges for Multi-Material Compliant Mechanisms
,”
Int. J. Adv. Manuf. Technol.
,
57
(
5–8
), p.
437
.
12.
Bejgerowski
,
W.
,
Gerdes
,
J. W.
,
Gupta
,
S. K.
,
Bruck
,
H. A.
, and
Wilkerson
,
S.
,
2010
, “
Design and Fabrication of a Multi-Material Compliant Flapping Wing Drive Mechanism for Miniature Air Vehicles
,”
ASME
Paper No. DETC2010-28519.
13.
Vogtmann
,
D. E.
,
Gupta
,
S. K.
, and
Bergbreiter
,
S.
,
2011
, “
Multi-Material Compliant Mechanisms for Mobile Millirobots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
3169
3174
.
14.
Vogtmann
,
D. E.
,
Gupta
,
S. K.
, and
Bergbreiter
,
S.
,
2013
, “
Characterization and Modeling of Elastomeric Joints in Miniature Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041017
.
15.
Gaynor
,
A. T.
,
Meisel
,
N. A.
,
Williams
,
C. B.
, and
Guest
,
J. K.
,
2014
, “
Multiple-Material Topology Optimization of Compliant Mechanisms Created Via Polyjet Three-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061015
.
16.
Bruyas
,
A.
,
Geiskopf
,
F.
, and
Renaud
,
P.
,
2015
, “
Design and Modeling of a Large Amplitude Compliant Revolute Joint: The Helical Shape Compliant Joint
,”
ASME J. Mech. Des.
,
137
(
8
), p.
085003
.
17.
Bruyas
,
A.
,
Geiskopf
,
F.
, and
Renaud
,
P.
,
2015
, “
Toward Unibody Robotic Structures With Integrated Functions Using Multimaterial Additive Manufacturing: Case Study of an MRI-Compatible Interventional Device
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
1744
1750
.
18.
Bartlett
,
N. W.
,
Tolley
,
M. T.
,
Overvelde
,
J. T.
,
Weaver
,
J. C.
,
Mosadegh
,
B.
,
Bertoldi
,
K.
,
Whitesides
,
G. M.
, and
Wood
,
R. J.
,
2015
, “
A 3D-Printed, Functionally Graded Soft Robot Powered by Combustion
,”
Science
,
349
(
6244
), pp.
161
165
.
19.
Kalisky
,
T.
,
Wang
,
Y.
,
Shih
,
B.
,
Drotman
,
D.
,
Jadhav
,
S.
,
Aronoff-Spencer
,
E.
, and
Tolley
,
M. T.
,
2017
, “
Differential Pressure Control of 3D Printed Soft Fluidic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Vancouver, BC, Canada, Sept. 24–28, pp.
6207
6213
.
20.
Behbahani
,
S. B.
, and
Tan
,
X.
,
2016
, “
Design and Modeling of Flexible Passive Rowing Joint for Robotic Fish Pectoral Fins
,”
IEEE Trans. Rob.
,
32
(
5
), pp.
1119
1132
.
21.
Chen
,
T.
,
Mueller
,
J.
, and
Shea
,
K.
,
2017
, “
Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically With Multi-Material 3D Printing
,”
Sci. Rep.
,
7
, p. 45671.
22.
Overvelde
,
J. T.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2017
, “
Rational Design of Reconfigurable Prismatic Architected Materials
,”
Nature
,
541
(
7637
), pp.
347
352
.
23.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
A Three-Spring Pseudorigid-Body Model for Soft Joints With Significant Elongation Effects
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061001
.
24.
Ma
,
K. Y.
,
Chirarattananon
,
P.
,
Fuller
,
S. B.
, and
Wood
,
R. J.
,
2013
, “
Controlled Flight of a Biologically Inspired, Insect-Scale Robot
,”
Science
,
340
(
6132
), pp.
603
607
.
25.
Dado
,
M. H.
,
2005
, “
Limit Position Synthesis and Analysis of Compliant 4-Bar Mechanisms With Specified Energy Levels Using Variable Parametric Pseudo-Rigid-Body Model
,”
Mech. Mach. Theory
,
40
(
8
), pp.
977
992
.
26.
She
,
Y.
,
Su
,
H.-J.
,
Meng
,
D.
,
Song
,
S.
, and
Wang
,
J.
,
2018
, “
Design and Modeling of a Compliant Link for Inherently Safe Corobots
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011001
.
27.
Stilli
,
A.
,
Wurdemann
,
H. A.
, and
Althoefer
,
K.
,
2017
, “
A Novel Concept for Safe, Stiffness-Controllable Robot Links
,”
Soft Rob.
,
4
(
1
), pp.
16
22
.
28.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
Extension Effects in Compliant Joints and Pseudo-Rigid-Body Models
,”
ASME J. Mech. Des.
,
138
(
9
), p.
092302
.
29.
Tari
,
H.
, and
Su
,
H.-J.
,
2011
, “
A Complex Solution Framework for the Kinetostatic Synthesis of a Compliant Four-Bar Mechanism
,”
Mech. Mach. Theory
,
46
(
8
), pp.
1137
1152
.
30.
Belfiore
,
N. P.
, and
Simeone
,
P.
,
2013
, “
Inverse Kinetostatic Analysis of Compliant Four-Bar Linkages
,”
Mech. Mach. Theory
,
69
, pp.
350
372
.
31.
DeMario
,
A.
, and
Zhao
,
J.
,
2017
, “
A Miniature, 3D-Printed, Walking Robot With Soft Joints
,”
ASME
Paper No. DETC2017-68182
.
32.
Klann
,
J. C.
,
2002
, “Walking Device,” U.S. Patent No.
6,478,314
.
33.
Sheba
,
J. K.
,
Elara
,
M. R.
,
Martínez-García
,
E.
, and
Tan-Phuc
,
L.
,
2017
, “
Synthesizing Reconfigurable Foot Traces Using a Klann Mechanism
,”
Robotica
,
35
(
1
), pp.
189
205
.
34.
Morita
,
K.
, and
Ishihara
,
H.
,
2006
, “
Proposal of 4-Leg Locomotion by Phase Change
,”
Climbing and Walking Robots
,
Springer
, Berlin, pp.
517
524
.
35.
Su
,
H.-J.
,
2009
, “
A Psuedorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
36.
Norton
,
R. L.
,
2011
,
Design of Machinery
, 5th ed.,
McGraw-Hill
, New York.
37.
O'Reilly
,
O. M.
,
2017
,
Modeling Nonlinear Problems in the Mechanics of Strings and Rods
,
Springer
, Berlin.
38.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.