Abstract

This paper describes the design and control of a novel hand exoskeleton. A subcategory of upper extremity exoskeletons, hand exoskeletons have promising applications in healthcare services, industrial workplaces, virtual reality, and military. Although much progress has been made in this field, most of the existing systems are position controlled and face several design challenges, including achieving minimal size and weight, difficulty enforcing natural grasping motions, exerting sufficient grip strength, ensuring the safety of the users hand, and maintaining overall user friendliness. To address these issues, this paper proposes a novel, slim, lightweight linkage mechanism design for a hand exoskeleton with a force control paradigm enabled via a compact series elastic actuator. A detailed design overview of the proposed mechanism is provided, along with kinematic and static analyses. To validate the overall proposed hand exoskeleton system, a fully integrated prototype is developed and tested in a series of experimental trials.

References

1.
Bogue
,
R.
,
2009
, “
Exoskeletons and Robotic Prosthetics: A Review of Recent Developments
,”
Industrial Robot
,
36
(
5
), pp.
421
427
. 10.1108/01439910910980141
2.
Brault
,
M. W.
,
2010
,
Americans with Disabilities: 2010
. U.S. Census 2010 Report. https://www2.census.gov/library/publications/2012/demo/p70-131.pdf
3.
Yap
,
H. K.
,
Lim
,
J. H.
,
Nasrallah
,
F.
,
Goh
,
J. C.
, and
Yeow
,
R. C.
,
2015
, “
A Soft Exoskeleton for Hand Assistive and Rehabilitation Application Using Pneumatic Actuators With Variable Stiffness
,”
Proceedings — IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30
, pp.
4967
4972
.
4.
Ho
,
N. S.
,
Tong
,
K. Y.
,
Hu
,
X. L.
,
Fung
,
K. L.
,
Wei
,
X. J.
,
Rong
,
W.
, and
Susanto
,
E. A.
,
2011
, “
An EMG-Driven Exoskeleton Hand Robotic Training Device on Chronic Stroke Subjects: Task Training System for Stroke Rehabilitation
,”
Proceedings of IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
June 29–July 1
. DOI: 10.1109/ICORR.2011.5975340
5.
Maciejasz
,
P.
,
Eschweiler
,
J.
,
Gerlach-Hahn
,
K.
,
Jansen-Troy
,
A.
, and
Leonhardt
,
S.
,
2014
, “
A Survey on Robotic Devices for Upper Limb Rehabilitation
,”
J. Neuroeng. Rehabil.
,
11
(
1
), p.
3
. 10.1186/1743-0003-11-3
6.
Lee
,
S. W.
,
Landers
,
K. A.
, and
Park
,
H. S.
,
2014
, “
Development of a Biomimetic Hand Exotendon Device (BiomHED) for Restoration of Functional Hand Movement Post-Stroke
,”
IEEE T. Neur. Syst. Rehabil. Eng.
,
22
(
4
), pp.
886
898
. 10.1109/tnsre.2014.2298362
7.
Ito
,
S.
,
Kawasaki
,
H.
,
Ishigure
,
Y.
,
Natsume
,
M.
,
Mouri
,
T.
, and
Nishimoto
,
Y.
,
2011
, “
A Design of Fine Motion Assist Equipment for Disabled Hand in Robotic Rehabilitation System
,”
J. Franklin Inst.
,
348
(
1
), pp.
79
89
. 10.1016/j.jfranklin.2009.02.009
8.
Ma
,
Z.
,
Ben-Tzvi
,
P.
, and
Danoff
,
J.
,
2016
, “
Hand Rehabilitation Learning System With An Exoskeleton Robotic Glove
,”
IEEE T. Neur. Syst. Rehabil. Eng.
,
24
(
12
), pp.
1323
1332
. 10.1109/TNSRE.2015.2501748
9.
Popescu
,
V. G.
,
Burdea
,
G. C.
,
Bouzit
,
M.
, and
Hentz
,
V. R.
,
2000
, “
A Virtual-Reality-Based Telerehabilitation System with Force Feedback
,”
IEEE T. Inf. Technol. B.
,
4
(
1
), pp.
45
51
. 10.1109/4233.826858
10.
Shimoga
,
K.
, and
Khosla
,
P.
,
1994
, “
Touch and Force Reflection for Telepresence Surgery
,”
Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Baltimore, MD
,
Nov. 3–6
, pp.
1049
1050
.
11.
Ben-Tzvi
,
P.
,
Danoff
,
J.
, and
Ma
,
Z.
,
2016
, “
The Design Evolution of a Sensing and Force-Feedback Exoskeleton Robotic Glove for Hand Rehabilitation Application
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051019
. 10.1115/1.4032270
12.
Heo
,
P.
, and
Kim
,
J.
,
2014
, “
Power-Assistive Finger Exoskeleton With a Palmar Opening At the Fingerpad
,”
IEEE T. Biomed. Eng.
,
61
(
11
), pp.
2688
2697
. 10.1109/TBME.2014.2325948
13.
Agarwal
,
P.
,
Fox
,
J.
,
Yun
,
Y.
,
O’Malley
,
M. K.
, and
Deshpande
,
A. D.
,
2015
, “
An Index Finger Exoskeleton With Series Elastic Actuation for Rehabilitation: Design, Control and Performance Characterization
,”
Int. J. Robot. Res.
,
34
(
14
), pp.
1747
1772
. 10.1177/0278364915598388
14.
Jo
,
I.
, and
Bae
,
J.
,
2017
, “
Design and Control of a Wearable and Force-controllable Hand Exoskeleton System
,”
Mechatronics
,
41
(
2
), pp.
90
101
. 10.1016/j.mechatronics.2016.12.001
15.
Chiri
,
A.
,
Giovacchini
,
F.
,
Vitiello
,
N.
,
Cattin
,
E.
,
Roccella
,
S.
,
Vecchi
,
F.
, and
Carrozza
,
M. C.
,
2009
, “
HANDEXOS: Towards an Exoskeleton Device for the Rehabilitation of the Hand
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
, pp.
1106
1111
.
16.
Iqbal
,
J.
,
Ahmad
,
O.
, and
Malik
,
A.
,
2011
, “
HEXOSYS II — Towards Realization of Light Mass Robotics for the Hand
,”
Proceedings of the 14th IEEE International Multitopic Conference
,
Karachi, Pakistan
,
Dec. 22–24
, pp.
115
119
.
17.
Chauhan
,
R. J.
, and
Ben-Tzvi
,
P.
,
2018
, “
Latent Variable Grasp Prediction for Exoskeletal Glove Control
,”
Proceedings of ASME Dynamic Systems and Control
,
Atlanta, GA
,
Sep. 30–Oct. 3
. https://doi.org/10.1115/DSCC2018-8978
18.
Lee
,
B. J.
,
Williams
,
A.
, and
Ben-Tzvi
,
P.
,
2018
, “
Intelligent Object Grasping With Sensor Fusion for Rehabilitation and Assistive Applications
,”
IEEE T. Neur. Syst. Rehabil. Eng.
,
26
(
8
), pp.
1556
1565
. 10.1109/TNSRE.2018.2848549
19.
In
,
H.
,
Kang
,
B. B.
,
Sin
,
M. K.
, and
Cho
,
K. J.
,
2015
, “
Exo-Glove: A Wearable Robot for the Hand With a Soft Tendon Routing System
,”
IEEE Robot. Autom. Mag.
,
22
(
1
), pp.
97
105
. 10.1109/MRA.2014.2362863
20.
Nycz
,
C. J.
,
Delph
,
M. A.
, and
Fischer
,
G. S.
,
2015
, “
Modeling and Design of a Tendon Actuated Soft Robotic Exoskeleton for Hemiparetic Upper Limb Rehabilitation
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Milan, Italy
,
Aug. 25–29
, pp.
3889
3892
.
21.
Popov
,
D.
,
Gaponov
,
I.
, and
Ryu
,
J. H.
,
2017
, “
Portable Exoskeleton Glove with Soft Structure for Hand Assistance in Activities of Daily Living
,”
IEEE/ASME T. Mech.
,
22
(
2
), pp.
865
875
. 10.1109/TMECH.2016.2641932
22.
Koo
,
I.
,
Byunghyun Kang
,
B.
, and
Cho
,
K.-J.
,
2013
, “
Development of Hand Exoskeleton Using Pneumatic Artificial Muscle Combined With Linkage
,”
J. Korean Soc. Precis. Eng.
,
30
, pp.
1217
1224
. 10.7736/KSPE.2013.30.11.1217
23.
Polygerinos
,
P.
,
Lyne
,
S.
,
Wang
,
Z.
,
Nicolini
,
L. F.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
, and
Walsh
,
C. J.
,
2013
, “
Towards a Soft Pneumatic Glove for Hand Rehabilitation
,”
Proceedings of IEEE International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
1512
1517
.
24.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation
,”
Robot. Auton. Syst.
,
73
, pp.
135
143
. 10.1016/j.robot.2014.08.014
25.
Yun
,
S.-S.
,
Kang
,
B. B.
, and
Cho
,
K.-J.
,
2017
, “
Exo-Glove PM: An Easily Customizable Modularized Pneumatic Assistive Glove
,”
IEEE Robot. Autom. Lett.
,
2
(
3
), pp.
1725
1732
. 10.1109/LRA.2017.2678545
26.
Refour
,
E.
,
Sebastian
,
B.
, and
Ben-Tzvi
,
P.
,
2018
, “
Two-Digit Robotic Exoskeleton Glove Mechanism: Design and Integration
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025002
. 10.1115/1.4038775
27.
Lin
,
J.
,
Wu
,
Y.
, and
Huang
,
T. S.
,
2000
, “
Modeling the Constraints of Human Hand Motion
,”
Constraints
, pp.
121
126
. 10.1109/HUMO.2000.897381
28.
Feix
,
T.
,
Romero
,
J.
,
Schmiedmayer
,
H. B.
,
Dollar
,
A. M.
, and
Kragic
,
D.
,
2016
, “
The GRASP Taxonomy of Human Grasp Types
,”
IEEE T. Hum-Mach. Syst.
,
46
(
1
), pp.
66
77
. 10.1109/THMS.2015.2470657
29.
Edwards
,
S. J.
,
Buckland
,
D. J.
, and
McCoy-Powlen
,
J. D.
,
2002
,
Developmental and Functional Hand Grasps
, 1st ed.,
Slack Incorporated
,
Thorofare, NJ
.
30.
Lee
,
K.-S.
, and
Jung
,
M.-C.
,
2015
, “
Three-Dimensional Finger Joint Angles by Hand Posture and Object Properties
,”
Ergonomics
,
12
(
2
), pp.
1
11
. 10.1080/00140139.2015.1108458
31.
Hara
,
A.
,
Amauchi
,
Y. Y.
,
Kusunose
,
K. K.
,
Yamauchi
,
Y.
, and
Kusunose
,
K. K.
,
1994
, “Analysis of Thumb and Index Finger Joints During Pinching Motion and Writing a Cross, as Measured by Electrogoniometers,”
Clinical Biomechanics and Related Research
.
Springer
Japan, Tokyo
, pp.
282
293
.
32.
Lowe
,
B. D.
,
Kong
,
Y.
, and
Han
,
J.
,
2006
, “
Development and Application of a Hand Force Measurement System
,”
Proceedings of the 16th Congress of the International Ergonomics Association
,
Maastricht, The Netherlands
,
July 10–14
.
33.
Mathiowetz
,
V.
,
Kashman
,
N.
,
Volland
,
G.
,
Weber
,
K.
,
Dowe
,
M.
, and
Rogers
,
S.
,
1985
, “
Grip and Pinch Strength: Normative Data for Adults
,”
Arch. Phys. Med. Rehab.
,
66
(
2
), pp.
69
74
.
34.
Takagi
,
M.
,
Iwata
,
K.
,
Takahashi
,
Y.
,
Yamamoto
,
S. I.
,
Koyama
,
H.
, and
Komeda
,
T.
,
2009
, “
Development of a Grip Aid System Using Air Cylinders
,”
Proceedings — IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
2312
2317
.
35.
Hasegawa
,
Y.
,
Mikami
,
Y.
,
Watanabe
,
K.
, and
Sankai
,
Y.
,
2008
, “
Five-Fingered Assistive Hand with Mechanical Compliance of Human Finger
,”
Proceedings — IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
718
724
.
36.
Arata
,
J.
,
Ohmoto
,
K.
,
Gassert
,
R.
,
Lambercy
,
O.
,
Fujimoto
,
H.
, and
Wada
,
I.
,
2013
, “
A New Hand Exoskeleton Device for Rehabilitation Using a Three-Layered Sliding Spring Mechanism
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
3902
3907
.
37.
Pratt
,
J.
,
Krupp
,
B.
, and
Morse
,
C.
,
2002
, “
Series Elastic Actuators for High Fidelity Force Control
,”
Industrial Robot
,
29
(
3
), pp.
234
241
. 10.1108/01439910210425522
38.
Schiele
,
A.
, and
Van Der Helm
,
F. C.
,
2006
, “
Kinematic Design to Improve Ergonomics in Human Machine Interaction
,”
IEEE T. Neur. Syst. Rehabil. Eng.
,
14
(
4
), pp.
456
469
. 10.1109/TNSRE.2006.881565
39.
Jarrassé
,
N.
, and
Morel
,
G.
,
2010
, “
A Formal Method for Avoiding Hyperstaticity When Connecting an Exoskeleton to a Human Member
,”
Proceedings — IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, pp.
1188
1195
.
You do not currently have access to this content.