Abstract

This paper is concerned with a compliant-hinge mechanism that can provide a wide range of torque-angle profiles. The mechanism consists of thin-walled open-section shells that are subjected to combined twisting and bending. A pair of open-section shells is so arranged as to get a large rotation about a virtual axis with high stiffness along other axes. A replaceable cam-like guideway regulates the bending of the open-section shells as they twist, thereby generating the desired torque profile. An energy-based, graphical, and computational design method is formulated to obtain the guideway profile for a specified torque profile. A physical prototype is constructed for an assistive chair for the elderly to demonstrate the variable-torque output and the efficacy of the hinge.

References

References
1.
Radaelli
,
G.
, and
Herder
,
J. L.
,
2017
, “
Gravity Balanced Compliant Shell Mechanisms
,”
Int. J. Solids Struct.
,
118–119
, pp.
78
88
. 10.1016/j.ijsolstr.2017.04.021
2.
Hou
,
C. W.
, and
Lan
,
C. C.
,
2013
, “
Functional Joint Mechanisms With Constant-Torque Outputs
,”
Mech. Mach. Theory
,
62
, pp.
166
181
. 10.1016/j.mechmachtheory.2012.12.002
3.
Hampali
,
S.
,
Pai
,
A. S.
, and
Ananthasuresh
,
G. K.
,
2018
, “An Open-Section Shell Designed for Customized Bending and Twisting to Ease Sitting and Rising in a Chair,”
Machines, Mechanism and Robotics. Lecture Notes in Mechanical Engineering
,
Springer
,
Singapore
, pp.
427
439
.
4.
Kuo
,
P. H.
, and
Deshpande
,
A. D.
,
2018
, “
Novel Design of a Passive Variable Stiffness Joint Mechanism: Inspiration From Biomechanics of Hand Joint
,”
Proceedings of the ASME 2013 Dynamic Systems and Control Conference
,
Palo Alto, CA
,
Oct. 21–23
.
5.
Accto
,
D.
,
Tagliamonte
,
N. L.
,
Carpino
,
G.
,
Sergi
,
F.
,
Di Palo
,
M.
, and
Guglielmelli
,
E.
,
2011
, “
Design of a Rotary Passive Viscoelastic Joint for Wearable Robots
,”
IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
June 29–July 1
.
6.
Wolf
,
S.
,
Eiberger
,
O.
, and
Hirzinger
,
G.
,
2011
, “
The DLR FSJ: Energy Based Design of a Variable Stiffness Joint
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
5082
5089
.
7.
Accoto
,
D.
,
Tagliamonte
,
N. L.
,
Carpino
,
G.
,
Sergi
,
F.
,
Di Palo
,
M.
, and
Guglielmelli
,
E.
,
2012
, “
PVEJ: A Modular Passive Viscoelastic Joint for Assistive Wearable Robots
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
St. Paul, MN
,
May 14–18
, pp.
3361
3366
.
8.
Eugene
,
W. N.
,
Ambler
,
D. A.
, and
Lowry
,
W.
,
1991
, “
Bistable Hinge Mechanism
,”
U.S. Patent No. 6,141,831. 10.1016/j.(73)
.
9.
Waynick
,
W. A.
,
1991
, “
Detent Mechanism For A Vehicle Door
,”
U.S. Patent No. 6,108,866. 10.1016/j.(73)
.
10.
Sanders
,
M. D.
,
1988
, “
Elastomeric Hinge Spring
,”
U.S. Patent No. 4.794,6769. 10.1057/9780230607156
.
11.
Nair Prakashah
,
H.
, and
Zhou
,
H.
,
2016
, “
Synthesis of Constant Torque Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064503
. 10.1115/1.4034885
12.
Guest
,
S.
,
Kebadze
,
E.
, and
Pellegrino
,
S.
,
2011
, “
A Zero-Stiffness Elastic Shell Structure
,”
J. Mech. Mater. Struct.
,
6
(
1–4
), pp.
203
212
. 10.2140/jomms.2011.6.203
13.
Jutte
,
C. V.
,
2008
, “
Generalised Synthesis Methodology of Nonlinear Springs for Prescribed Load-Displacement Functions
,”
PhD thesis
,
University of Michigan
,
Ann Arbor, MI
.
14.
Groothuis
,
S.
,
Carloni
,
R.
, and
Stramigioli
,
S.
,
2014
, “
A Novel Variable Stiffness Mechanism Capable of an Infinite Stiffness Range and Unlimited Decoupled Output Motion
,”
Actuators
,
3
(
2
), pp.
107
123
. 10.3390/act3020107
15.
Robinson
,
J. M.
,
2015
, “
A Compliant Mechanism-Based Variable-Stiffness Joint
,”
Master’s thesis
,
Bringham Young University
,
Provo, UT
.
16.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2018
, “
Design and Analysis of a Variable Stiffness Inside-Deployed Lamina Emergent Joint
,”
Mech. Mach. Theory
,
120
, pp.
166
177
. 10.1016/j.mechmachtheory.2017.09.023
17.
Cannon
,
J. R.
, and
Howell
,
L. L.
,
2005
, “
A Compliant Contact-Aided Revolute Joint
,”
Mech. Mach. Theory
,
40
(
11
), pp.
1273
1293
. 10.1016/j.mechmachtheory.2005.01.011
18.
Goldfarb
,
M.
, and
Speich
,
J. E.
,
1999
, “
A Well-Behaved Revolute Flexure Joint for Compliant Mechanism Design
,”
ASME J. Mech.. Des.
,
121
(
3
), pp.
424
429
. 10.1115/1.2829478
19.
Bona
,
F. D.
, and
Zelenika
,
S.
,
1997
, “
A Generalized Elastical-Type Approach to the Analysis of Large Displacements of Spring-Strips
,”
Proc. Inst. Mech. Eng., Part C
,
211
(
7
), pp.
509
517
. 10.1243/0954406971521890
20.
Smith
,
S. T.
,
2000
,
Flexures : Elements of Elastic Mechanisms
,
CRC Press
,
Boca Raton, FL
.
21.
Trease
,
B. P.
,
Moon
,
Y. M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), p.
788
. 10.1115/1.1900149
22.
Tummala
,
Y.
,
Frecker
,
M. I.
,
Wissa
,
A. A.
, and
Hubbard
,
J. E.
,
2014
, “
Design Optimization of a Twist Compliant Mechanism with Nonlinear Stiffness
,”
Smart Mater. Struct.
,
23
(
10
), p.
104010
.
10.1088/0964-1726/23/10/104010
23.
Hull
,
C. W.
,
1986
, “
Seating Furniture With Lift Mechanism
,”
U.S. Patent No. 7.455,360 B2
. DOI: 10.1145/634067.634234.
24.
Poncy
,
R. P.
,
1987
, “
Chair With Lift Assistance Mechanism
,”
U.S. Patent No. 4,690,457
.
25.
Newman
,
D.
,
1994
, “
Seat Assist
,”
U.S Patent No. 5,316,370
.
26.
Gore
,
I. G. E.
,
Branch
,
N.
,
Roman
,
T.
,
Orange
,
E.
,
Wayne
,
K.
, and
Gore
,
R. A.
,
1998
, “
Seat Assist
,”
U.S. Patent No. 5,31,370. DOI:US005485919A
.
27.
Wright
,
J. D.
,
1972
, “
Seat Construction
,”
U.S. Patent No. 3,659,897
.
28.
Doerner
,
J. T.
,
1969
, “
Chair Control With Torsion Spring Tilting Seat and Chair Back
,”
U.S Patent No. 83,603,640
.
You do not currently have access to this content.