Abstract

This paper presents a design methodology for mechanisms consisting of a single continuous structure, continuum mechanisms, that blends the kinematic synthesis of rigid-body mechanisms with topology optimization for compliant mechanisms. Rather than start with a generic structure that is shaped to achieve a required force-deflection task for a compliant mechanism, our approach shapes the initial structure based on the kinematic synthesis of a rigid-body mechanism for the required movement, then the structure is shaped using finite element analysis to achieve the required force-deflection relationship. The result of this approach is a continuum mechanism with the same workpiece movement as the rigid link mechanism when actuated. An example illustrates the design process to obtain an eight-bar linkage that guides its workpiece in straight-line rectilinear movement. We show that the resulting continuum mechanism provides the desired rectilinear movement. A 210 mm physical model machined from Nylon-6 is shown to achieve 21.5 mm rectilinear movement with no perceived deviation from a straight-line.

References

References
1.
Hu
,
X.
,
Chen
,
A.
,
Luo
,
Y.
,
Zhang
,
C.
, and
Zhang
,
E.
,
2018
, “
Steerable Catheters for Minimally Invasive Surgery: a Review and Future Directions
,”
Comput. Assisted Surg.
,
23
(
1
), pp.
21
41
. 10.1080/24699322.2018.1526972
2.
Yamaguchi
,
T.
,
Ambe
,
Y.
,
Ando
,
H.
,
Konyo
,
M.
,
Tadakuma
,
K.
,
Maruyama
,
S.
, and
Tadokoro
,
S.
,
2019
, “
A Mechanical Approach to Suppress the Oscillation of a Long Continuum Robot Flying With Water Jets
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
4346
4353
. 10.1109/LRA.2019.2932582
3.
Greer
,
J. D.
,
Morimoto
,
T. K.
,
Okamura
,
A. M.
, and
Hawkes
,
E. W.
,
2019
, “
A Soft, Steerable Continuum Robot that Grows via Tip Extension
,”
Soft Rob.
,
6
(
1
), pp.
95
108
. 10.1089/soro.2018.0034
4.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley-Interscience
,
New York
.
5.
Kota
,
S.
,
Li
,
J.
,
Rodgers
,
S. M.
, and
Sniegowski
,
J.
,
2001
, “
Design of Compliant Mechanisms: Applications to MEMS
,”
Analog Integrated Circuits Signal Process.
,
29
(
1–2
), pp.
7
15
. 10.1023/A:1011265810471
6.
Suh
,
W. R.
,
McCarthy
,
J. M.
, and
Peraza-Hernandez
,
E. A.
,
2019
, “
Efficient Development of Continuum/Compliant Planar Linkage Mechanisms
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5A: 43rd Mechanisms and Robotics Conference
,
Anaheim, CA
,
Aug. 18–21
, ASME, p.
V05AT07A003
. 10.1115/DETC2019-97299
7.
Cao
,
L.
,
Dolovich
,
A. T.
,
Schwab
,
A. L.
,
Herder
,
J. L.
, and
Zhang
,
W.
,
2015
, “
Toward a Unified Design Approach for Both Compliant Mechanisms and Rigid-Body Mechanisms: Module Optimization
,”
ASME J. Mech. Des.
,
137
(
12
), p.
122301
. 10.1115/1.4031294
8.
Valentini
,
P. P.
, and
Pennestri
,
E.
,
2018
, “
Compliant Four-Bar Linkage Synthesis With Second-Order Flexure Hinge Approximation
,”
Mech. Mach. Theory
,
128
, pp.
225
233
. 10.1016/j.mechmachtheory.2018.06.003
9.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2001
, “
Topology Optimiationa of Compliant Mechanisms With Strength Considerations
,”
Mech. Struct. Mach.
,
29
(
2
), pp.
199
221
. 10.1081/SME-100104480
10.
Cao
,
L.
,
Dolovich
,
A.
, and
Zhang
,
W. J.
,
2013
, “
On Understanding of Design Problem Formulation for Compliant Mechanisms Through Topology Optimization
,”
Mech. Sci.
,
4
(
2
), pp.
357
369
. 10.5194/ms-4-357-2013
11.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2011
,
Geometric Design of Linkages
,
Springer
,
New York
.
12.
Sonawale
,
K. H.
, and
McCarthy
,
J. M.
,
2015
, “
Design of Eight-Bar Linkages With an Application to Rectilinear Motion
,”
Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5B: 39th Mechanisms and Robotics Conference
,
Boston, MA
,
Aug. 2–5
, ASME, p.
V05BT08A084
. 10.1115/DETC2015-47804
13.
Sonawale
,
K. H.
, and
McCarthy
,
J. M.
,
2016
, “
A Design System for Eight-Bar Linkages as Constrained 4R Serial Chains
,”
J. Mech. Robot.
,
8
(
1
), p.
011016
. 10.1115/1.4031026
14.
Su
,
H. J.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
J. Mech. Robot.
,
1
(
2
), p.
021008
. 10.1115/1.3046148
15.
Su
,
H. J.
, and
McCarthy
,
J. M.
,
2007
, “
Synthesis of Bistable Compliant Four-Bar Mechanisms Using Polynomial Homotopy
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1094
1098
.
16.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
17.
LinLinß
,
S.
, and
Milojevic
,
A.
,
2012
, “
Model-Based Design of Flexure Hinges for Rectilinear Guiding with Compliant Mechanisms in Precision Systems
,”
Mechanismentechnik in Ilmenau
,
Budapest und Niš. Ilmenau
:
Universitätsverlag Ilmenau
, pp.
13
24
.
18.
Shi
,
Q.
,
Wang
,
S.
,
Qiu
,
A.
,
Xu
,
Y.
, and
Ji
,
X.
,
2006
, “
Design Principle of Suspension of MEMS Gyroscope
,”
2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems
,
Zhuhai, China
,
Jan. 18–21
, 10.1109/NEMS.2006.334695
19.
Mackay
,
A. B.
,
Smith
,
D. G.
,
Magleby
,
S. P.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2012
, “
Metrics for Evaluation and Design of Large-Displacement Linear-Motion Compliant Mechanisms
,”
ASME J. Mech. Des.
,
134
(
1
), p.
011008
. 10.1115/1.4004191
20.
Hao
,
G.
,
Kong
,
X.
, and
He
,
X.
,
2014
, “
A Planar Reconfigurable Linear Rigid-Body Motion Linkage With Two Operation Modes
,”
J. Mech. Eng. Sci.
,
228
(
16
), pp.
2985
2991
. 10.1177/0954406214523754
21.
Liu
,
Y.
, and
McCarthy
,
J. M.
,
2015
, “
Flexure Design for Eight-Bar Rectilinear Motion Mechanism
,”
Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5A: 39th Mechanisms and Robotics Conference
,
Boston, MA
,
Aug. 2–5,
, ASME, p.
V05AT08A025
. 10.1115/DETC2015-47863
22.
Kempe
,
A.
,
1877
,
How to Draw a Straight Line: A Lecture on Linkages
(
Cornell University Library Historical Math Monographs
),
Macmillan and Company
.
23.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
. 10.1115/1.2919359
24.
Xu
,
Q.
,
2017
,
Design and Implementation of Large-Range Compliant Micropositioning Systems
,
John Wiley Sons
,
Singapore
.
25.
Parrish
,
B. E.
, and
McCarthy
,
J. M.
,
2013
, “
Use of the Jacobian to Verify Smooth Movement in Watt I and Stephenson I Six-Bar Linkages
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 6A: 37th Mechanisms and Robotics Conference
,
Portland, OR
,
Aug. 4–7
, ASME, p.
V06AT07A057
. 10.1115/DETC2013-13051
26.
Sonawale
,
K. H.
, and
McCarthy
,
J. M.
,
2014
, “
Synthesis of Useful Eight-Bar Linkages as Constrained 6R Loops
,”
Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5A: 38th Mechanisms and Robotics Conference
,
Buffalo, NY
,
Aug. 17–20
, ASME, p.
V05AT08A076
. 10.1115/DETC2014-35523
27.
Linß
,
S.
,
Henning
,
S.
, and
Zentner
,
L.
,
2019
, “Modeling and Design of Flexure Hinge-Based Compliant Mechanisms,”
Kinematics – Analysis and Applications
,
J.
Mizrahi
, ed.,
IntechOpen
. 10.5772/intechopen.85224
You do not currently have access to this content.