Abstract

This paper focuses on the design of a novel aero-terrestrial robotic system based on the morphology of the Hymenoptera order insects and, particularly, on a strategy based on nonlinear oscillators for the coordination of its 12 terrestrial degrees-of-freedom (DoF). The ability of this new aero-terrestrial robot to, successfully, perform the walking process is validated through numerical simulations and tests performed on an experimental platform in which the gait speed was varied from 0.04 to 0.2 m/s. Some of the most important qualities of this robotic system are a relatively simple design with only 2 DoF per leg and a versatile terrestrial locomotion with the ability to vary its speed and direction in real-time with smooth transitions. Furthermore, unlike existent similar systems, the robot is designed to initiate a flight phase in any position without adopting particular postures avoiding undesirable interferences with the walking configuration.

References

References
1.
Lock
,
R. J.
,
Burgess
,
S. C.
, and
Vaidyanathan
,
R.
,
2014
, “
Multi-Modal Locomotion: From Animal to Application
,”
Bioinspir. Biomim.
,
9
(
1
), pp.
1
18
. 10.1088/1748-3182/9/1/011001
2.
Nie
,
C.
,
Pacheco Corcho
,
X.
, and
Spenko
,
M.
,
2013
, “
Robots on the Move: Versatility and Complexity in Mobile Robot Locomotion
,”
IEEE Robot. Autom. Mag.
,
20
(
4
), pp.
72
82
. 10.1109/MRA.2013.2248310
3.
Sitti
,
M.
,
Menciassi
,
A.
, and
Ijspeert
,
A. J.
,
2013
, “
Survey and Introduction to the Focused Section on Bio-Inspired Mechatronics
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
409
418
. 10.1109/TMECH.2012.2233492
4.
Daler
,
L.
,
2015
,
Ph.D. dissertation
,
École Polytechnique Fédérale De Lausanne
,
Lausanne, Switzerland
.
5.
Daler
,
L.
,
Lecoeur
,
J.
,
Hahlen
,
P. B.
, and
Floreano
,
D.
,
2013
, “
A Flying Robot With Adaptive Morphology for Multi-Modal Locomotion
,”
IEEE International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
1361
1366
.
6.
Dudley
,
C. J.
,
Woods
,
A. C.
, and
Leang
,
K. K.
,
2015
, “
A Micro Spherical Rolling and Flying Robot
,”
IEEE International Conference on Intelligent Robots and Systems
,
Hamburg, Germany
,
Dec.
, pp.
5863
5869
.
7.
Pratt
,
C. J.
, and
Leang
,
K. K.
,
2016
, “
Dynamic Underactuated Flying-Walking (DUCK) Robot
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Stockholm, Sweden
,
June
, pp.
3267
3274
.
8.
Araki
,
B.
,
Koh
,
J.
,
Guerrero
,
L.
,
Aukes
,
D. M.
,
Makineni
,
A.
,
Tolley
,
M. T.
,
Rus
,
D. L.
,
Wood
,
R. J.
,
Kumar
,
V.
,
Flying
,
T.
,
Mulgaonkar
,
Y.
,
Araki
,
B.
,
Koh
,
J.
,
Guerrero-bonilla
,
L.
, and
Aukes
,
D. M.
,
2016
, “
The Flying Monkey: A Mesoscale Robot That Can Run, Fly, and Grasp
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm
,
May 16–21
, pp.
4672
4679
.
9.
Kalantari
,
A.
, and
Spenko
,
M.
,
2012
, “
Design and Prototyping of a Walking Quadrotor
,”
Proceedings of the ASME Design Engineering Technical Conference, Vol 4 (Parts A and B)
,
Chicago, IL
,
Aug. 12–15
, pp.
1067
1072
.
10.
Ratsamee
,
P.
,
Kriengkomol
,
P.
,
Arai
,
T.
,
Kamiyama
,
K.
,
Mae
,
Y.
,
Kiyokawa
,
K.
,
Mashita
,
T.
,
Uranishi
,
Y.
, and
Takemura
,
H.
,
2016
, “
A Hybrid Flying and Walking Robot For Steel Bridge Inspection
,”
SSRR 2016—International Symposium on Safety, Security and Rescue Robotics
,
Lausanne, Switzerland
,
Oct. 23–27
, pp.
62
67
.
11.
Pitonyak
,
M.
, and
Sahin
,
F.
,
2017
, “
A Novel Hexapod Robot Design With Flight Capability
,”
2017 12th System of Systems Engineering Conference, SoSE
,
Waikoloa, USA
,
June 18–21
, pp.
1
6
.
12.
Pitonyak
,
M.
, and
Sahin
,
F.
,
2017
, “
Locomotion and Transitional Procedures for a Hexapod-Quadcopter Robot
,”
2017 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2017
,
Alberta, Canada
,
Oct. 5–8
, pp.
1447
1452
.
13.
Peterson
,
K.
, and
Fearing
,
R. S.
,
2011
, “
Experimental Dynamics of Wing Assisted Running for a Bipedal Ornithopter
,”
IEEE International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
5080
5086
.
14.
Woodward
,
M. A.
, and
Sitti
,
M.
,
2014
, “
MultiMo-Bat: A Biologically Inspired Integrated Jumping-Gliding Robot
,”
Int. J. Robot. Res.
,
33
(
12
), pp.
1511
1529
. 10.1177/0278364914541301
15.
Bruzzone
,
L.
, and
Quaglia
,
G.
,
2012
, “
Review Article: Locomotion Systems for Ground Mobile Robots in Unstructured Environments
,”
Mech. Sci.
,
3
(
2
), pp.
49
62
. 10.5194/ms-3-49-2012
16.
Mintchev
,
S.
, and
Floreano
,
D.
,
2016
, “
Adaptive Morphology: A Design Principle for Multimodal and Multifunctional Robots
,”
IEEE Robot. Automat. Mag.
,
23
(
3
), pp.
42
54
. 10.1109/MRA.2016.2580593
17.
RunBin
,
C.
,
YangZheng
,
C.
,
Lin
,
L.
,
Jian
,
W.
, and
Xu
,
M. H.
,
2013
, “
Inverse Kinematics of a New Quadruped Robot Control Method
,”
Int. J. Adv. Robot. Syst.
,
10
(
1
), p.
46
. 10.5772/55299
18.
Park
,
H.
,
Kwak
,
B.
, and
Bae
,
J.
,
2018
, “
Inverse Kinematics Analysis and COG Trajectory Planning Algorithms for Stable Walking of a Quadruped Robot With Redundant DOFs
,”
J. Bionic Eng.
,
15
(
4
), pp.
610
622
. 10.1007/s42235-018-0050-8
19.
Mulloney
,
B.
, and
Smarandache
,
C.
,
2010
, “
Fifty Years of CPGs: Two Neuroethological Papers That Shaped the Course of Neuroscience
,”
Front. Behav. Neurosci.
,
4
(
45
), pp.
1
8
. 10.3389/fnbeh.2010.00045
20.
Hughes
,
G. M.
, and
Wiersma
,
C. A. G.
,
1960
, “
The Co-ordination of Swimmeret Movements in the Crayfish, Procambarus Clarkii (Girard)
,”
J. Exp. Biol.
,
37
(
4
), pp.
657
670
.
21.
Ijspeert
,
A. J.
,
2008
, “
Central Pattern Generators for Locomotion Control in Animals and Robots: A Review
,”
Neural Netw.
,
21
(
4
), pp.
642
653
. 10.1016/j.neunet.2008.03.014
22.
Ding
,
R.
,
Yu
,
J.
,
Yang
,
Q.
, and
Tan
,
M.
,
2013
, “
Dynamic Modelling of a CPG-Controlled Amphibious Biomimetic Swimming Robot
,”
Int. J. Adv. Robot. Syst.
,
10
(
4
), p.
199
. 10.5772/56059
23.
Suzuki
,
H.
,
Lee
,
J. H.
, and
Okamoto
,
S.
,
2017
, “
Development of Semi-Passive Biped Walking Robot Embedded With CPG-Based Locomotion Control
,”
2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI
,
Jeju, South Korea
,
June 28–July 1
, pp.
75
78
.
24.
Zhang
,
J.
,
Gao
,
F.
,
Han
,
X.
,
Chen
,
X.
, and
Han
,
X.
,
2014
, “
Trot Gait Design and CPG Method for a Quadruped Robot
,”
J. Bionic Eng.
,
11
(
1
), pp.
18
25
. 10.1016/S1672-6529(14)60016-0
25.
Fang
,
Y.
,
Hu
,
J.
,
Liu
,
W.
,
Chen
,
B.
,
Qi
,
J.
, and
Ye
,
X.
,
2016
, “
A CPG-Based Online Trajectory Planning Method for Industrial Manipulators
,”
Proceedings of 2016 Asia-Pacific Conference on Intelligent Robot Systems, ACIRS 2016
,
Tokyo, Japan
,
July 20–22
, pp.
41
46
.
26.
Fang
,
Y.
,
Hu
,
J.
,
Qi
,
J.
,
Liu
,
W.
,
Wang
,
W.
, and
Peng
,
Y.
,
2019
, “
Planning Trigonometric Frequency Central Pattern Generator Trajectory for Cyclic Tasks of Robot Manipulators
,”
Proc. Inst. Mech. Eng. C
,
233
(
11
), pp.
4014
4031
. 10.1177/0954406218806010
27.
Tian
,
J.
, and
Lu
,
Q.
,
2015
, “
Simulation of Octopus Arm Based on Coupled CPGs
,”
J. Robot.
,
2015
(
3
), pp.
1
9
. 10.1155/2015/529380
28.
Guo
,
X.
,
Chen
,
L.
,
Zhang
,
Y.
,
Yang
,
P.
, and
Zhang
,
L.
,
2010
, “
A Study on Control Mechanism of Above Knee Robotic Prosthesis Based on CPG Model
,”
2010 IEEE International Conference on Robotics and Biomimetics, ROBIO
,
Tianjin, China
,
Dec. 14–18
, pp.
283
287
.
29.
Steingrube
,
S.
,
Timme
,
M.
,
Wörgötter
,
F.
, and
Manoonpong
,
P.
,
2010
, “
Self-Organized Adaptation of a Simple Neural Circuit Enables Complex Robot Behaviour
,”
Nat. Phys.
,
6
(
3
), pp.
224
230
. 10.1038/nphys1508
30.
Quigley
,
M.
,
Gerkey
,
B.
,
Conley
,
K.
,
Faust
,
J.
,
Foote
,
T.
,
Leibs
,
J.
,
Berger
,
E.
,
Wheeler
,
R.
, and
Ng
,
A.
,
2009
, “
ROS: An Open-Source Robot Operating System
,”
International Conference on Robotics and Automation (ICRA)
,
Kobe, Japan
,
May 12–17
, pp.
1
5
.
31.
Mees
,
A. I.
, and
Chua
,
L. O.
,
1979
, “
The Hopf Bifurcation Theorem and Its Applications to Nonlinear Oscillations in Circuits and Systems
,” IEEE Trans. Circuits Syst.,
26
(
4
), pp.
235
254
. 10.1109/TCS.1979.1084636
32.
Oh
,
C. H.
, and
Singh
,
K.
,
1994
, “
Generalized Q-Oscillators and Their Hopf Structures
,”
J. Phys. A: Math. Gen.
,
27
(
17
), pp.
5907
5918
. 10.1088/0305-4470/27/17/023
33.
Lauter
,
R.
,
Brendel
,
C.
,
Habraken
,
S. J. M.
, and
Marquardt
,
F.
,
2015
, “
Pattern Phase Diagram for Two-Dimensional Arrays of Coupled Limit-Cycle Oscillators
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
,
92
(
1
), pp.
1
8
. 10.1103/physreve.92.012902
34.
Zhou
,
C.
, and
Low
,
K. H.
,
2012
, “
Design and Locomotion Control of a Biomimetic Underwater Vehicle With Fin Propulsion
,”
IEEE/ASME Trans. Mechatron.
,
17
(
1
), pp.
25
35
. 10.1109/TMECH.2011.2175004
35.
Zollikofer
,
C. P. E.
,
1994
, “
Stepping Patterns in Ants
,”
J. Exp. Biol.
,
192
(
1
), pp.
119
127
.
36.
Wilson
,
D. M.
,
1966
, “
Insect Walking
,”
Annu. Rev. Entomol.
,
11
(
1
), pp.
103
122
. 10.1146/annurev.en.11.010166.000535
37.
Vijaykumar
,
A.
,
Bardelli
,
P.
,
Rothberg
,
A.
,
Hilboll
,
A.
,
Kloeckner
,
A.
,
Scopatz
,
A.
,
Lee
,
L.
,
Rokem
,
A.
,
Woods
,
C. N.
,
Fulton
,
C.
,
Masson
,
C.
,
Häggström
,
C.
,
Fitzgerald
,
C.
,
Nicholson
,
D. A.
,
Hagen
,
D. R.
,
Pasechnik
,
D. V.
,
Olivetti
,
E.
,
Martin, Wieser
,
E.
,
Silva
,
F.
,
Lenders
,
F.
,
Wilhelm
,
F.
,
Young
,
G.
,
Price
,
G. A.
,
Ingold
,
G. L.
,
Allen
,
G. E.
,
Lee
,
G. R.
,
Audren
,
H.
,
Probst
,
I.
,
Dietrich
,
J. P.
,
Silterra
,
J.
,
Webber
,
J. T.
,
Slavič
,
J.
,
Nothman
,
J.
,
Buchner
,
J.
,
Kulick
,
J.
,
Schönberger
,
J. L.
,
de Miranda Cardoso
,
J. V.
,
Reimer
,
J.
,
Harrington
,
J.
,
Cano Rodríguez
,
J. L.
,
Nunez-Iglesias
,
J.
,
Kuczynski
,
J.
,
Tritz
,
K.
,
Thoma
,
M.
,
Newville
,
M.
,
Kümmerer
,
M.
,
Bolingbroke
,
M.
,
Tartre
,
M.
,
Pak
,
M.
,
Smith
,
N. J.
,
Nowaczyk
,
N.
,
Shebanov
,
N.
,
Pavlyk
,
O.
,
Brodtkorb
,
P. A.
, Lee, P.,
McGibbon
,
R. T.
,
Feldbauer
,
R.
,
Lewis
,
S.
,
Tygier
,
S.
,
Sievert
,
S.
,
Vigna
,
S.
,
Peterson
,
S.
,
More
,
S.
,
Pudlik
,
T.
,
Oshima
,
T.
,
Pingel
,
T. J.
,
Robitaille
,
T. P.
,
Spura
,
T.
,
Jones
,
T. R.
,
Cera
,
T.
,
Leslie
,
T.
,
Zito
,
T.
,
Krauss
,
T.
,
Upadhyay
,
U.
,
Halchenko
,
Y.
O.
, and
Vázquez-Baeza
,
Y.
,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nature Methods
,
17
(
3
), pp.
261
272
. https://doi.org/10.1038/s41592-019-0686-2
38.
Lam
,
S. K.
,
Pitrou
,
A.
, and
Seibert
,
S.
,
2015
, “
Numba: A LLVM-Based Python JIT Compiler
,”
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC
,
Austin, TX
,
Nov.
, pp.
1
6
.
You do not currently have access to this content.