Abstract

Direct position analysis (DPA) of parallel manipulators (PMs) is in general difficult to solve. Over on PMs’ topology, DPA complexity depends on the choice of the actuated joints. From an analytic point of view, the system of algebraic equations that one must solve to implement PMs’ DPA is usually expressible in an apparently simple form, but such a form does not allow an analytic solution and even the problem formalization is relevant in PMs’ DPAs. The ample literature on the DPA of Stewart platforms well documents this point. This paper addresses the DPA of a particular translational PM of 3-URU type, which has the actuators on the frame while the actuated joints are not adjacent to the frame. The problem formulation brings to a closure-equation system consisting of three irrational equations in three unknowns. Such a system is transformed into an algebraic system of four quadratic equations in four unknowns that yields a univariate irrational equation in one of the four unknowns and three explicit expressions of the remaining three unknowns. Then, an algorithm is proposed which is able to find only the real solutions of the DPA. The proposed solution technique can be applied to other DPAs reducible to a similar system of irrational equations and, as far as this author is aware, is novel.

References

1.
Gough
,
V. E.
,
1956–1957
, “
Contribution to Discussion of Papers on Research in Automobile Stability, Control and Tyre Performance
,”
Proc. Autom. Div. Inst. Mech. Eng.
,
10
(
1
), pp.
392
394
.
2.
Gough
,
V. E.
, and
Whitehall
,
S. G.
,
1962
, “
Universal Tyre Test Machine
,”
Proceedings of the 9th International Technical Congress FISITA
,
London, UK
,
May
, pp.
117
137
.
3.
Stewart
,
D.
,
1965
, “
A Platform with Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
, No 15), pp.
371
386
.
4.
Merlet
,
J. P.
,
2006
,
Parallel Robots
,
Springer
,
Heidelberg, DE
.
5.
Raghavan
,
M.
,
1993
, “
The Stewart Platform of General Geometry has 40 Configurations
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
277
282
.
6.
Faugère
,
J. C.
, and
Lazard
,
D.
,
1995
, “
The Combinatorial Classes of Parallel Manipulators
,”
Mech. Mach. Theory
,
30
(
6
), pp.
765
776
.
7.
Wampler
,
C. W.
,
1996
, “
Forward Displacement Analysis of General six–in–Parallel SPS (Stewart) Platform Manipulators Using Soma Coordinates
,”
Mech. Mach. Theory
,
31
(
3
), pp.
331
337
.
8.
Husty
,
M. L.
,
1996
, “
An Algorithm for Solving the Direct Kinematic of Stewart-Gough-Type Platforms
,”
Mech. Mach. Theory
,
31
(
4
), pp.
365
380
.
9.
Dietmaier
,
P.
,
1998
, “The Stewart-Gough Platform of General Geometry can Have 40 Real Postures,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarcic
, and
M. L.
Husty
, eds.,
Kluwer Academic Publishers
,
Dordrecht, NL
, pp.
7
16
.
10.
Lee
,
T.-Y.
, and
Shim
,
J.-K.
,
2003
, “
Improved Dialytic Elimination Algorithm for the Forward Kinematics of the General Stewart-Gough Platform
,”
Mech. Mach. Theory
,
38
(
6
), pp.
563
577
.
11.
Merlet
,
J.-P.
,
2004
, “
Solving the Forward Kinematics of a Gough-Type Parallel Manipulator With Interval Analysis
,”
Int. J. Rob. Res.
,
23
(
3
), pp.
221
236
.
12.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Robot. Autom.
,
6
(
3
), pp.
281
290
.
13.
Ma
,
O.
, and
Angeles
,
J.
,
1991
, “
Architecture Singularities of Platform Manipulators
,”
Proceedings of the 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
, Vol.
2
, pp.
1542
1547
.
14.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1995
, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
566
572
.
15.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
, Vol.
1
, pp.
496
502
.
16.
Liu
,
G.
,
Lou
,
Y.
, and
Li
,
Z.
,
2003
, “
Singularities of Parallel Manipulators: a Geometric Treatment
,”
IEEE Trans. Rob. Autom.
,
19
(
4
), pp.
579
594
.
17.
Voglewede
,
P. A.
, and
Ebert-Uphoff
,
I.
,
2004
, “
Measuring “Closeness” to Singularities for Parallel Manipulators
,”
Proceedings of the 2004 IEEE International Conference on Robotics and Automation
,
New Orleans, LA
, Vol.
5
, pp.
4539
4544
.
18.
Clavel
,
R.
,
1988
, “
DELTA, a Fast Robot with Parallel Geometry
,”
Proceedings of the 18th International Symposium on Industrial Robots (ISIR)
,
Lausanne, CH
, pp.
91
100
.
19.
Hervé
,
J. M.
,
1994
, “
The Mathematical Group Structure of the set of Displacements
,”
Mech. Mach. Theory
,
29
(
1
), pp.
73
81
.
20.
Brinker
,
J.
, and
Corves
,
B.
,
2015
, “
A Survey on Parallel Robots With Delta-Like Architecture
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, TW
, pp.
407
414
.
21.
Hervè
,
J. M.
, and
Sparacino
,
F.
,
1991
, “
Structural Synthesis of “Parallel” Robots Generating Spatial Translation
,”
Proceedings of the 5th International Conference on Advanced Robotics (ICAR1991)
,
Pisa, IT
, pp.
808
813
.
22.
Tsai
,
L. W.
,
1996
, “Kinematics of a Three-DOF Platform With Three Extensible Limbs,”
Recent Advances in Robot Kinematics
,
J.
Lenarcic
, and
V.
Parenti-Castelli
, eds.,
Kluwer Academic Publishers
,
Dordrecht, NL
, pp.
401
410
.
23.
Gogu
,
G.
,
2009
,
Structural Synthesis of Parallel Robots—Part 2: Translational Topologies with Two and Three Degrees of Freedom
,
Springer
,
Heidelberg, DE
.
24.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer
,
Heidelberg, DE
.
25.
Di Gregorio
,
R.
,
2020
, “
A Review of the Literature on the Lower-Mobility Parallel Manipulators of 3-UPU or 3-URU Type
,”
Robotics
,
9
(
1
), p.
5
.
26.
Di Gregorio
,
R.
,
2020
, Meccanismo Parallelo Traslazionale. March 23, 2020; Italy Patent Application No. 102020000006100.
27.
Di Gregorio
,
R.
,
2020
, “
A Novel 3-URU Architecture with Actuators on the Base: Kinematics and Singularity Analysis
,”
Robotics
,
9
(
3
), p.
60
.
28.
Huda
,
S.
, and
Takeda
,
Y.
,
2007
, “
Kinematic Analysis and Synthesis of a 3-URU Pure Rotational Parallel Mechanism with Respect to Singularity and Workspace
,”
J. Adv. Mech. Des. Syst. Manuf.
,
1
(
1
), pp.
81
92
.
29.
Huda
,
S.
, and
Takeda
,
Y.
,
2008
, “
Kinematic Design of 3-URU Pure Rotational Parallel Mechanism With Consideration of Uncompensatable Error
,”
J. Adv. Mech. Des. Syst. Manuf.
,
2
(
5
), pp.
874
886
.
30.
Carbonari
,
L.
,
Costa
,
D.
,
Palmieri
,
G.
, and
Palpacelli
,
M.
,
2019
, “
Reconfigurability Analysis of a Class of Parallel Kinematics Machines
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
021002
.
31.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “Constraint Singularities as C-Space Singularities,”
Advances in Robot Kinematics: Theory and Applications
,
J.
Lenarčič
, and
F.
Thomas
, eds.,
Springer
,
Dordrecht, NL
, pp.
183
192
.
32.
Di Gregorio
,
R.
,
2020
, “Position Analysis of a Novel Translational 3-URU with Actuators on the Base,”
New Advances in Mechanisms, Mechanical Transmissions and Robotics—MTM & Robotics 2020
,
E
Lovasz
,
I.
Maniu
,
I.
Doroftei
,
M.
Ivanescu
, and
C. M.
Gruescu
, eds.,
Springer
,
Dordrecht, NL
.
33.
Carbonari
,
L.
,
Corinaldi
,
D.
,
Palmieri
,
G.
, and
Palpacelli
,
M.
,
2018
, “
Kinematics of a Novel 3-URU Reconfigurable Parallel Robot
,”
Proceedings of the 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft
, pp.
1
7
.
34.
Hunt
,
K. H.
,
1990
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford, UK
.
35.
Di Gregorio
,
R.
, and
Parenti-Castelli
,
V.
,
1998
, “A Translational 3-DOF Parallel Manipulator,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarcic
, and
M. L.
Husty
, eds.,
Springer
,
Dordrecht, NL
, pp.
49
58
.
36.
Ardema
,
M. D.
,
2005
,
Newton-Euler Dynamics
,
Springer
,
New York, NY
.
37.
Gwaltney
,
C. R.
,
Lin
,
Y.
,
Simoni
,
L. D.
, and
Stadtherr
,
M. A.
,
2008
, “Interval Methods for Non-Linear Equation Solving Applications,”
Handbook of Granular Computing
,
W.
Pedrycz
,
A.
Skowron
, and
V.
Kreinovich
, eds.,
John Wiley & Sons, Ltd
,
Chichester, UK
, pp.
81
96
.
You do not currently have access to this content.