Abstract

Some special tasks require human operations and cannot be performed by robots or other autonomous equipment, such as special industrial assembly and surgical procedures in small and crowded spaces. Workers/surgeons in these cases tend to have physical fatigue. In this study, a novel variable-stiffness joint based on positive pressure was proposed, and a torque model was established. The locking torque variation, step response, and energy consumption were evaluated in comparison with a torque motor. A lockable lower-limb exoskeleton based on the variable-stiffness joint was developed, and wearable tests were conducted to evaluate a voice recognition interface and supporting performance. The locking torque of the variable-stiffness joint could be continuously varied from 0 Nm to 26 Nm with the air pressure ranging from 1.6 bar to 5.5 bar. The settling time was 0.328 s in the step response experiment. With a load of 6 Nm, the variable-stiffness joint can realize an energy consumption reduction of 75.01% compared with using a torque motor. Moreover, the lockable lower-limb exoskeleton can realize a 35–60% reduction in the average muscle activation in each subject (aged 22–57) to maintain squatting postures at three different knee angles (paired t-test, P < 0.01). The proposed exoskeleton system has good mobility, low energy consumption, and easy-to-control features, showing great potential in supporting the weight of workers/surgeons during long-term operations.

References

1.
Jo
,
H.
,
Lim
,
O.
,
Ahn
,
Y.
,
Chang
,
S.
, and
Koh
,
S.
,
2021
, “
Negative Impacts of Prolonged Standing at Work on Musculoskeletal Symptoms and Physical Fatigue: The Fifth Korean Working Conditions Survey
,”
Yonsei Med. J.
,
62
(
6
), pp.
510
519
.
2.
Werner
,
R. A.
,
Gell
,
N.
,
Hartigan
,
A.
,
Wiggerman
,
N.
, and
Keyserling
,
W. M.
,
2010
, “
Risk Factors for Plantar Fasciitis Among Assembly Plant Workers
,”
PM R
,
2
(
2
), pp.
110
116
.
3.
Wall
,
R.
,
Läubli
,
T.
,
Seibt
,
R.
,
Rieger
,
M. A.
, and
Steinhilber
,
B.
,
2019
, “
Associations Between Low Back Muscle Activity, Pelvic Movement and Low Back Discomfort Development During Prolonged Standing—An Exploratory Laboratory Study
,”
Int. J. Ind. Ergon.
,
72
, pp.
380
389
.
4.
Schram
,
B.
,
Orr
,
R.
,
Pope
,
R.
,
Canetti
,
E.
, and
Knapik
,
J.
,
2020
, “
Risk Factors for Development of Lower Limb Osteoarthritis in Physically Demanding Occupations: A Narrative Umbrella Review
,”
J. Occup. Health
,
62
(
1
), p.
e12103
.
5.
Yu
,
C.
,
Ye
,
J.
,
Jia
,
J.
,
Zhao
,
X.
,
Chen
,
Z.
, and
Chen
,
J.
,
2022
, “
Design, Synthesis, and Experiment of Foot-Driven Lower Limb Rehabilitation Mechanisms
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021001
.
6.
Mudie
,
K.
,
Billing
,
D.
,
Garofolini
,
A.
,
Karakolis
,
T.
, and
LaFiandra
,
M.
,
2021
, “
The Need for a Paradigm Shift in the Development of Military Exoskeletons
,”
Eur. J. Sport Sci.
,
22
(
1
), pp.
1
8
.
7.
Pesenti
,
M.
,
Antonietti
,
A.
,
Gandolla
,
M.
, and
Pedrocchi
,
A.
,
2021
, “
Towards a Functional Performance Validation Standard for Industrial Low-Back Exoskeletons: State of the Art Review
,”
Sensors
,
21
(
3
), p.
808
.
8.
Yan
,
Z.
,
Han
,
B.
,
Du
,
Z.
,
Huang
,
T.
,
Bai
,
O.
, and
Peng
,
A.
,
2021
, “
Development and Testing of a Wearable Passive Lower-Limb Support Exoskeleton to Support Industrial Workers
,”
Biocybern. Biomed. Eng.
,
41
(
1
), pp.
221
238
.
9.
Chen
,
Q.
,
Guo
,
S.
,
Sun
,
L.
,
Liu
,
Q.
, and
Jin
,
S.
,
2021
, “
Inertial Measurement Unit-Based Optimization Control of a Soft Exosuit for Hip Extension and Flexion Assistance
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021016
.
10.
Cestari
,
M.
,
Sanz-Merodio
,
D.
,
Arevalo
,
J. C.
, and
Garcia
,
E.
,
2015
, “
An Adjustable Compliant Joint for Lower-Limb Exoskeletons
,”
IEEE/ASME Trans. Mechatron.
,
20
(
2
), pp.
889
898
.
11.
Schrade
,
S. O.
,
Dätwyler
,
K.
,
Stücheli
,
M.
,
Studer
,
K.
,
Türk
,
D.-A.
,
Meboldt
,
M.
,
Gassert
,
R.
, and
Lambercy
,
O.
,
2018
, “
Development of VariLeg, An Exoskeleton With Variable Stiffness Actuation: First Results and User Evaluation From the CYBATHLON 2016
,”
J. Neuroeng. Rehabil.
,
15
(
1
), p.
18
.
12.
Sutrisno
,
A.
, and
Braun
,
D. J.
,
2019
, “
Enhancing Mobility With Quasi-Passive Variable Stiffness Exoskeletons
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
3
), pp.
487
496
.
13.
Kang
,
I.
,
Peterson
,
R. R.
,
Herrin
,
K. R.
,
Mazumdar
,
A.
, and
Young
,
A. J.
,
2023
, “
Design and Validation of a Torque-Controllable Series Elastic Actuator-Based Hip Exoskeleton for Dynamic Locomotion
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021007
.
14.
Liu
,
X.
, and
Wang
,
Q.
,
2020
, “
Real-Time Locomotion Mode Recognition and Assistive Torque Control for Unilateral Knee Exoskeleton on Different Terrains
,”
IEEE/ASME Trans. Mechatron.
,
25
(
6
), pp.
2722
2732
.
15.
Naselli
,
G. A.
,
Rimassa
,
L.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2017
, “
A Variable Stiffness Joint With Superelastic Material
,”
Meccanica
,
52
(
4–5
), pp.
781
793
.
16.
Liu
,
M.
,
Hao
,
L.
,
Zhang
,
W.
, and
Zhao
,
Z.
,
2020
, “
A Novel Design of Shape-Memory Alloy-Based Soft Robotic Gripper With Variable Stiffness
,”
Int. J. Adv. Rob. Syst.
,
17
(
1
), p.
255690211
.
17.
Gerez
,
L.
,
Gao
,
G.
,
Dwivedi
,
A.
, and
Liarokapis
,
M.
,
2020
, “
A Hybrid, Wearable Exoskeleton Glove Equipped With Variable Stiffness Joints, Abduction Capabilities, and a Telescopic Thumb
,”
IEEE Access
,
8
, pp.
173345
173358
.
18.
Liu
,
H.
,
Zhu
,
D.
, and
Xiao
,
J.
,
2020
, “
Conceptual Design and Parameter Optimization of a Variable Stiffness Mechanism for Producing Constant Output Forces
,”
Mech. Mach. Theory
,
154
, p.
104033
.
19.
Wu
,
J.
,
Wang
,
Z.
,
Chen
,
W.
,
Wang
,
Y.
, and
Liu
,
Y.
,
2020
, “
Design and Validation of a Novel Leaf Spring-Based Variable Stiffness Joint With Reconfigurability
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
2045
2053
.
20.
Shao
,
Y.
,
Zhang
,
W.
,
Su
,
Y.
, and
Ding
,
X.
,
2021
, “
Design and Optimisation of Load-Adaptive Actuator With Variable Stiffness for Compact Ankle Exoskeleton
,”
Mech. Mach. Theory
,
161
, p.
104323
.
21.
Chen
,
G.
,
Qi
,
P.
,
Guo
,
Z.
, and
Yu
,
H.
,
2016
, “
Mechanical Design and Evaluation of a Compact Portable Knee–Ankle–Foot Robot for Gait Rehabilitation
,”
Mech. Mach. Theory
,
103
, pp.
51
64
.
22.
Huang
,
J.
,
Zhang
,
Q.
,
Scarpa
,
F.
,
Liu
,
Y.
, and
Leng
,
J.
,
2017
, “
Shape Memory Polymer-Based Hybrid Honeycomb Structures With Zero Poisson’s Ratio and Variable Stiffness
,”
Compos. Struct.
,
179
, pp.
437
443
.
23.
Firouzeh
,
A.
,
Salerno
,
M.
, and
Paik
,
J.
,
2017
, “
Stiffness Control With Shape Memory Polymer in Underactuated Robotic Origamis
,”
IEEE Trans. Rob.
,
33
(
4
), pp.
765
777
.
24.
Jeong
,
J.
,
Yasir
,
I. B.
,
Han
,
J.
,
Park
,
C. H.
,
Bok
,
S.
, and
Kyung
,
K.
,
2019
, “
Design of Shape Memory Alloy-Based Soft Wearable Robot for Assisting Wrist Motion
,”
Appl. Sci.
,
9
(
19
), p.
4025
.
25.
Park
,
S. J.
, and
Park
,
C. H.
,
2019
, “
Suit-Type Wearable Robot Powered by Shape-Memory-Alloy-Based Fabric Muscle
,”
Sci. Rep.
,
9
(
1
), p.
9157
.
26.
Zhang
,
J.
,
Cong
,
M.
,
Liu
,
D.
,
Du
,
Y.
, and
Ma
,
H.
,
2021
, “
Design of an Active and Passive Control System for a Knee Exoskeleton With Variable Stiffness Based on a Shape Memory Alloy
,”
J. Intell. Rob. Syst.
,
101
(
3), p.
45
.
27.
He
,
C.
,
Wang
,
S.
, and
Zuo
,
S.
,
2018
, “
A Linear Stepping Endovascular Intervention Robot With Variable Stiffness and Force Sensing
,”
Int. J. Comput. Assist. Radiol. Surg.
,
13
(
5SI
), pp.
671
682
.
28.
Wang
,
H.
,
Chen
,
Z.
, and
Zuo
,
S.
,
2021
, “
Flexible Manipulator With Low-Melting-Point Alloy Actuation and Variable Stiffness
,”
Soft Rob.
,
9
(
3
), pp.
577
590
.
29.
Chenal
,
T. P.
,
Case
,
J. C.
,
Paik
,
J.
, and
Kramer
,
R. K.
,
2014
, “
Variable Stiffness Fabrics With Embedded Shape Memory Materials for Wearable Applications
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
2827
2831
.
30.
Brown
,
E.
,
Rodenberg
,
N.
,
Amend
,
J.
,
Mozeika
,
A.
,
Steltz
,
E.
,
Zakin
,
M. R.
,
Lipson
,
H.
, and
Jaeger
,
H. M.
,
2010
, “
Universal Robotic Gripper Based on the Jamming of Granular Material
,”
Proc. Natl. Acad. Sci.
,
107
(
44
), pp.
18809
18814
.
31.
Zuo
,
S.
,
Iijima
,
K.
,
Tokumiya
,
T.
, and
Masamune
,
K.
,
2014
, “
Variable Stiffness Outer Sheath With “Dragon Skin” Structure and Negative Pneumatic Shape-Locking Mechanism
,”
Int. J. Comput. Assist. Radiol. Surg.
,
9
(
5SI
), pp.
857
865
.
32.
Hauser
,
S.
,
Robertson
,
M.
,
Ijspeert
,
A.
, and
Paik
,
J.
,
2017
, “
JammJoint: A Variable Stiffness Device Based on Granular Jamming for Wearable Joint Support
,”
IEEE Robot. Autom. Lett.
,
2
(
2
), pp.
849
855
.
33.
Narang
,
Y. S.
,
Aktaş
,
B.
,
Ornellas
,
S.
,
Vlassak
,
J. J.
, and
Howe
,
R. D.
,
2020
, “
Lightweight Highly Tunable Jamming-Based Composites
,”
Soft Rob.
,
7
(
6
), pp.
724
735
.
34.
Miller-Jackson
,
T.
,
Sun
,
Y.
,
Natividad
,
R.
, and
Yeow
,
C. H.
,
2019
, “
Tubular Jamming: A Variable Stiffening Method Toward High-Force Applications With Soft Robotic Components
,”
Soft Rob.
,
6
(
4
), pp.
468
482
.
35.
Sozer
,
C.
,
Paterno
,
L.
,
Tortora
,
G.
, and
Menciassi
,
A.
,
2020
, “
Pressure-Driven Manipulator With Variable Stiffness Structure
,”
Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–June 4
, pp.
696
702
.
36.
Liu
,
T.
,
Xia
,
H.
,
Lee
,
D.
,
Firouzeh
,
A.
,
Park
,
Y.
, and
Cho
,
K.
,
2021
, “
A Positive Pressure Jamming Based Variable Stiffness Structure and Its Application on Wearable Robots
,”
IEEE Robot. Autom. Lett.
,
6
(
4
), pp.
8078
8085
.
37.
Sozer
,
C.
,
Paterno
,
L.
,
Tortora
,
G.
, and
Menciassi
,
A.
,
2021
, “
A Novel Pressure-Controlled Revolute Joint With Variable Stiffness
,”
Soft Rob.
,
9
(
2
), pp.
723
733
.
38.
Matsuzaki
,
I.
,
Ebara
,
T.
,
Tsunemi
,
M.
, and
Fujishiro
,
M.
,
2019
, “
Sit-Stand Endoscopic Workstations Equipped With a Wearable Chair
,”
VideoGIE
,
4
(
11
), pp.
498
500
.
39.
Du
,
Z.
,
Yan
,
Z.
,
Huang
,
T.
,
Bai
,
O.
,
Huang
,
Q.
, and
Han
,
B.
,
2021
, “
Mechanical Design With Experimental Verification of a Lightweight Exoskeleton Chair
,”
J. Bionic Eng.
,
18
(
2
), pp.
319
332
.
You do not currently have access to this content.