Abstract

Kinetostatic and dynamic analyses of compliant mechanisms with complex configurations continue to be an attractive issue for obtaining a process-concise and result-accurate solution. In this paper, the transfer matrix method (TMM) is improved for a unified linear kinetostatics and dynamic modeling of compliant mechanisms with complex serial-parallel configurations in an oriented graphic way. In detail, the transfer matrices of typical building blocks commonly used in compliant mechanisms are summarized and derived. Then, a graphic transfer matrix modeling procedure capturing both the kinetostatics and dynamics of general compliant mechanisms is introduced. The displacement amplification ratio, input/output stiffness, parasitic error, natural frequencies, and frequency response of a typical compliant microgripper and a planar parallel three-degrees-of-freedom (3DOF) nanopositioner are calculated with such a graphic transfer matrix method. The advantages of the proposed modeling method lie in its convenience and uniformity in formulating both the kinetostatic and dynamic behaviors of a class of compliant mechanisms with distributed and lumped compliances in a transfer matrix manner, which has minimal DOF and is easily programmed.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Ling
,
M.
,
Howell
,
L. L.
,
Cao
,
J.
, and
Chen
,
G.
,
2020
, “
Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey
,”
ASME Appl. Mech. Rev.
,
72
(
3
), p.
030802
.
3.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
4.
Chen
,
W.
,
Qu
,
J.
,
Chen
,
W.
, and
Zhang
,
J.
,
2017
, “
A Compliant Dual-Axis Gripper With Integrated Position and Force Sensing
,”
Mechatronics
,
47
(
8
), pp.
105
115
.
5.
Calogero
,
J.
,
Frecker
,
M.
,
Hasnain
,
Z.
, and
Hubbard
,
J. E.
,
2018
, “
Tuning of a Rigid-Body Dynamics Model of a Flapping Wing Structure With Compliant Joints
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011007
.
6.
Ling
,
M.
,
Cao
,
J.
,
Zeng
,
M.
,
Lin
,
J.
, and
Inman
,
D. J.
,
2016
, “
Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms
,”
Smart Mater. Struct.
,
25
(
7
), pp.
75022
75032
.
7.
Choi
,
K. B.
,
Lee
,
J. J.
,
Kim
,
G. H.
,
Lim
,
H. J.
, and
Kwon
,
S. G.
,
2018
, “
Amplification Ratio Analysis of a Bridge-Type Mechanical Amplification Mechanism Based on a Fully Compliant Model
,”
Mech. Mach. Theory
,
121
(
3
), pp.
355
372
.
8.
Zhu
,
X.
,
Xu
,
X.
,
Wen
,
Z.
,
Ren
,
J.
, and
Liu
,
P.
,
2015
, “
A Novel Flexure-Based Vertical Nanopositioning Stage With Large Travel Range
,”
Rev. Sci. Instrum.
,
86
(
10
), p.
105112
.
9.
Chen
,
W.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2017
, “
Design, Modeling and Test of a Novel Compliant Orthogonal Displacement Amplification Mechanism for the Compact Micro-Grasping System
,”
Microsyst. Technol.
,
23
(
7
), pp.
2485
2498
.
10.
Ryu
,
J. W.
,
Lee
,
S. Q.
,
Gweon
,
D. G.
, and
Moon
,
K. S.
,
1999
, “
Inverse Kinematic Modeling of a Coupled Flexure Hinge Mechanism
,”
Mechatronics
,
9
(
6
), pp.
657
674
.
11.
Kang
,
D.
, and
Gweon
,
D.
,
2013
, “
Analysis and Design of a Cartwheel-Type Flexure Hinge
,”
Precis. Eng.
,
37
(
1
), pp.
33
43
.
12.
Friedrich
,
R.
,
Lammering
,
R.
, and
Rösner
,
M.
,
2014
, “
On the Modeling of Flexure Hinge Mechanisms With Finite Beam Elements of Variable Cross Section
,”
Precis. Eng.
,
38
(
4
), pp.
915
920
.
13.
Ling
,
M.
,
Cao
,
J.
,
Howell
,
L. L.
, and
Zeng
,
M.
,
2018
, “
Kinetostatic Modeling of Complex Compliant Mechanisms With Serial-Parallel Substructures: A Semi-Analytical Matrix Displacement Method
,”
Mech. Mach. Theory
,
125
(
5
), pp.
169
184
.
14.
Chen
,
X.
, and
Li
,
Y.
,
2017
, “
Design and Analysis of a New High Precision Decoupled XY Compact Parallel Micromanipulator
,”
Micromachines
,
8
(
3
), p.
82
.
15.
Zhu
,
Z.
,
To
,
S.
,
Zhu
,
W. L.
,
Li
,
Y.
, and
Huang
,
P.
,
2018
, “
Optimum Design of a Piezo-Actuated Triaxial Compliant Mechanism for Nanocutting
,”
IEEE Trans. Ind. Electron.
,
65
(
8
), pp.
6362
6371
.
16.
Wu
,
S.
,
Shao
,
Z.
,
Su
,
H.
, and
Fu
,
H.
,
2019
, “
An Energy-Based Approach for Kinetostatic Modeling of General Compliant Mechanisms
,”
Mech. Mach. Theory
,
142
(
12
), p.
103588
.
17.
Li
,
H.
, and
Hao
,
G.
,
2017
, “
Constraint-Force-Based Approach of Modelling Compliant Mechanisms: Principle and Application
,”
Precis. Eng.
,
47
(
1
), pp.
158
181
.
18.
Ling
,
M.
,
Howell
,
L. L.
,
Cao
,
J.
, and
Jiang
,
Z.
,
2018
, “
A Pseudo-Static Model for Dynamic Analysis on Frequency Domain of Distributed Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051011
.
19.
Rui
,
X.
,
Wang
,
G.
,
Lu
,
Y.
, and
Yun
,
L.
,
2008
, “
Transfer Matrix Method for Linear Multibody System
,”
Multibody Syst. Dyn.
,
19
(
3
), pp.
179
207
.
20.
Lee
,
J. W.
, and
Lee
,
J. Y.
,
2017
, “
In-Plane Bending Vibration Analysis of a Rotating Beam With Multiple Edge Cracks by Using the Transfer Matrix Method
,”
Meccanica.
,
52
(
4–5
), pp.
1143
1157
.
21.
Chen
,
G.
,
Zeng
,
X.
,
Liu
,
X.
, and
Rui
,
X.
,
2020
, “
Transfer Matrix Method for the Free and Forced Vibration Analyses of Multi-Step Timoshenko Beams Coupled With Rigid Bodies on Springs
,”
Appl. Math. Model.
,
87
(
12
), pp.
152
170
.
22.
Rong
,
B.
,
Rui
,
X.
,
Lu
,
K.
,
Tao
,
L.
,
Wang
,
G.
, and
Ni
,
X.
,
2018
, “
Transfer Matrix Method for Dynamics Modeling and Independent Modal Space Vibration Control Design of Linear Hybrid Multibody System
,”
Mech. Syst. Signal Process.
,
104
(
1
), pp.
589
606
.
23.
Rui
,
X.
,
Bestle
,
D.
,
Wang
,
G.
,
Zhang
,
J.
,
Rui
,
X.
, and
He
,
B.
,
2020
, “
A New Version of the Riccati Transfer Matrix Method for Multibody Systems Consisting of Chain and Branch Bodies
,”
Multibody Syst. Dyn.
,
49
(
3
), pp.
337
354
.
24.
Abbas
,
L. K.
,
Zhou
,
Q.
,
Bestle
,
D.
, and
Rui
,
X.
,
2017
, “
A Unified Approach for Treating Linear Multibody Systems Involving Flexible Beams
,”
Mech. Mach. Theory
,
107
(
1
), pp.
197
209
.
25.
Jiang
,
M.
,
Rui
,
X.
,
Zhu
,
W.
,
Yang
,
F.
, and
Zhang
,
J.
,
2020
, “
Modeling and Control of Magnetorheological 6-DOF Stewart Platform Based on Multibody Systems Transfer Matrix Method
,”
Smart Mater. Struct.
,
29
(
3
), p.
035029
.
26.
Lu
,
H.
,
Rui
,
X.
,
Ding
,
Y.
,
Chang
,
Y.
,
Chen
,
Y.
,
Ding
,
J.
, and
Zhang
,
X.
,
2022
, “
A Hybrid Numerical Method for Vibration Analysis of Linear Multibody Systems With Flexible Components
,”
Appl. Math. Model.
,
101
(
18
), pp.
748
771
.
27.
Hu
,
J.
,
Wen
,
T.
, and
He
,
J.
,
2020
, “
Dynamics of Compliant Mechanisms Using Transfer Matrix Method
,”
Int. J. Precis. Eng. Manuf.
,
21
(
11
), pp.
2173
2189
.
28.
Zhu
,
W.
, and
Rui
,
X.
,
2017
, “
Modeling of a Three Degrees of Freedom Piezo-Actuated Mechanism
,”
Smart Mater. Struct.
,
26
(
1
), p.
015006
.
29.
Ling
,
M.
,
2019
, “
A General Two-Port Dynamic Stiffness Model and Static/Dynamic Comparison for Three Bridge-Type Flexure Displacement Amplifiers
,”
Mech. Syst. Signal Process.
,
119
(
1
), pp.
486
500
.
30.
Ling
,
M.
,
Cao
,
J.
, and
Pehrson
,
N.
,
2019
, “
Kinetostatic and Dynamic Analyses of Planar Compliant Mechanisms Via a Two-Port Dynamic Stiffness Model
,”
Precis. Eng.
,
57
(
2
), pp.
149
161
.
31.
Lin
,
C.
,
Zheng
,
S.
,
Li
,
P.
, and
Jiang
,
M.
,
2021
, “
Kinetostatic Analysis of 6-DOF Compliant Platform With a Multi-Stage Condensed Modeling Method
,”
Microsyst. Technol.
,
27
(
5
), pp.
2153
2166
.
32.
Li
,
J.
, and
Chen
,
G.
,
2018
, “
A General Approach for Generating Kinetostatic Models for Planar Flexure-Based Compliant Mechanisms Using Matrix Representation
,”
Mech. Mach. Theory
,
129
(
11
), pp.
131
147
.
33.
Ling
,
M.
,
Cao
,
J.
,
Jiang
,
Z.
,
Zeng
,
M.
, and
Li
,
Q.
,
2019
, “
Optimal Design of a Piezo-Actuated 2-DOF Millimeter-Range Monolithic Flexure Mechanism With a Pseudo-Static Model
,”
Mech. Syst. Signal Process.
,
115
(
1
), pp.
120
131
.
34.
Ling
,
M.
,
Zhang
,
X.
, and
Cao
,
J.
,
2022
, “
Extended Dynamic Stiffness Model for Analyzing Flexure-Hinge Mechanisms With Lumped Compliance
,”
ASME J. Mech. Des.
,
144
(
1
), p.
013304
.
35.
Niu
,
M.
,
Yang
,
B.
,
Yang
,
Y.
, and
Meng
,
G.
,
2018
, “
Two Generalized Models for Planar Compliant Mechanisms Based on Tree Structure Method
,”
Precis. Eng.
,
51
(
1
), pp.
137
144
.
36.
Chen
,
W.
,
Zhang
,
X.
,
Li
,
H.
,
Wei
,
J.
, and
Fatikow
,
S.
,
2017
, “
Nonlinear Analysis and Optimal Design of a Novel Piezoelectric-Driven Compliant Microgripper
,”
Mech. Mach. Theory
,
118
(
12
), pp.
32
52
.
37.
Wang
,
R.
, and
Zhang
,
X.
,
2017
, “
Optimal Design of a Planar Parallel 3-DOF Nanopositioner With Multi-Objective
,”
Mech. Mach. Theory
,
112
(
6
), pp.
61
83
.
38.
Ling
,
M.
,
Cao
,
J.
,
Jiang
,
Z.
, and
Lin
,
J.
,
2018
, “
A Semi-Analytical Modeling Method for the Static and Dynamic Analysis of Complex Compliant Mechanism
,”
Precis. Eng.
,
52
(
2
), pp.
64
72
.
39.
Ding
,
B.
, and
Li
,
Y.
,
2014
, “
Design and Analysis of a Decoupled XY Micro Compliant Parallel Manipulator
,”
Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)
,
Bali, Indonesia
,
Dec. 5–10
, pp.
1898
1903
.
40.
Ling
,
M.
, and
Zhang
,
X.
,
2021
, “
Coupled Dynamic Modeling of Piezo-Actuated Compliant Mechanisms Subjected to External Loads
,”
Mech. Mach. Theory
,
160
(
6
), p.
104283
.
41.
Gao
,
Q.
,
Li
,
Y.
,
Lu
,
X.
,
Zhang
,
C.
,
Zhang
,
X.
, and
Cheng
,
T.
,
2019
, “
A Piezoelectric Stick-Slip Linear Actuator With a Rhombus-Type Flexure Hinge Mechanism by Means of Parasitic Motion
,”
Rev. Sci. Instrum.
,
90
(
9
), p.
096102
.
42.
Ding
,
B.
,
Li
,
Y.
,
Xiao
,
X.
,
Tang
,
Y.
, and
Li
,
B.
,
2017
, “
Design and Analysis of a 3-DOF Planar Micromanipulation Stage With Large Rotational Displacement for Micromanipulation System
,”
Mech. Sci.
,
8
(
1
), pp.
117
126
.
43.
Qin
,
Y.
,
Shirinzadeh
,
B.
,
Zhang
,
D.
, and
Tian
,
Y.
,
2013
, “
Design and Kinematics Modeling of a Novel 3-DOF Monolithic Manipulator Featuring Improved Scott-Russell Mechanisms
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101004
.
You do not currently have access to this content.