Abstract

Origami has attracted tremendous attention in recent years owing to its capability of inspiring and enabling the design and development of reconfigurable structures and mechanisms for applications in various fields such as robotics and biomedical engineering. The vast majority of origami structures are folded starting from an initial two-dimensional crease pattern. However, in general, the planar configuration of such a crease pattern is in a singular state when the origami starts to fold. Such a singular state results in different motion possibilities of rigid or non-rigid folding. Thus, planar origami patterns cannot act as reliable initial configurations for further kinematic or structural analyses. To avoid the singularities of planar states and achieve reliable structural configurations during folding, we introduce a nonlinear prediction–correction method and present a spatial form-finding algorithm for four-fold origami. In this approach, first, initial nodal displacements are predicted based on the mountain-valley assignments of the given origami pattern, which are applied to vertices to form an initial spatial and defective origami model. Subsequently, corrections of nodal displacements are iteratively performed on the defective model until a satisfactory nonplanar configuration is obtained. Numerical experiments demonstrate the performance of the proposed algorithm in the form-finding of both trivial and non-trivial four-fold origami tessellations. The obtained configurations can be effectively utilized for further kinematic and structural analyses. Additionally, it has been verified that corrected and nonplanar configurations are superior to initial configurations in terms of matrix distribution and structural stiffness.

References

1.
Ma
,
J.
,
Song
,
J.
, and
Chen
,
Y.
,
2018
, “
An Origami-Inspired Structure With Graded Stiffness
,”
Int. J. Mech. Sci.
,
136
, pp.
134
142
.
2.
Qiu
,
C.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Repelling-Screw Based Force Analysis of Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031001
.
3.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “Designing Symmetric Derivatives of the Miura-ori,”
Advances in Architectural Geometry 2014
,
Springer
,
Cham
, pp.
233
241
.
4.
Wang
,
L. C.
,
Song
,
W. L.
,
Zhang
,
Y. J.
,
Qu
,
M. J.
,
Zhao
,
Z.
,
Chen
,
M.
,
Yang
,
Y.
,
Chen
,
H.
, and
Fang
,
D.
,
2020
, “
Active Reconfigurable Tristable Square-Twist Origami
,”
Adv. Funct. Mater.
,
30
(
13
), p.
1909087
.
5.
Zhang
,
K. T.
,
Fang
,
Y. F.
,
Fang
,
H. R.
, and
Dai
,
J. S.
,
2010
, “
Geometry and Constraint Analysis of the Three-Spherical Kinematic Chain Based Parallel Mechanism
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031014
.
6.
Sareh
,
P.
,
Chermprayong
,
P.
,
Emmanuelli
,
M.
,
Nadeem
,
H.
, and
Kovac
,
M.
,
2018
, “
The Spinning Cyclic ‘Miura-ORing’for Mechanical Collision-Resilience
,”
Origami
,
7
(
3
), pp.
981
994
.
7.
Gao
,
G.
,
Zhuo
,
T.
, and
Guan
,
W.
,
2020
, “
Recent Research Development of Energy-Absorption Structure and Application for Railway Vehicles
,”
J. Cent. South Univ.
,
27
(
4
), pp.
1012
1038
.
8.
Liu
,
S.
,
Yang
,
Q.
, and
Tao
,
R.
,
2020
, “
Four-Dimensional Printed Self-Deploying Circular Structures With Large Folding Ratio Inspired by Origami
,”
J. Intell. Mater. Syst. Struct.
,
31
(
18
), pp.
2128
2136
.
9.
You
,
Z.
,
2014
, “
Folding Structures Out of Flat Materials
,”
Science
,
345
(
6197
), pp.
623
624
.
10.
Yasuda
,
H.
, and
Yang
,
J.
,
2015
, “
Reentrant Origami-Based Metamaterials with Negative Poisson's Ratio and Bistability
,”
Phys. Rev. Lett.
,
114
(
18
), p.
185502
.
11.
Pratapa
,
P. P.
,
Liu
,
K.
, and
Paulino
,
G. H.
,
2019
, “
Geometric Mechanics of Origami Patterns Exhibiting Poisson's Ratio Switch by Breaking Mountain and Valley Assignment
,”
Phys. Rev. Lett.
,
122
(
15
), p.
155501
.
12.
Fan
,
W.
,
Chen
,
Y.
,
Li
,
J.
,
Sun
,
Y.
,
Feng
,
J.
,
Hassanin
,
H.
, and
Sareh
,
P.
,
2021
, “
Machine Learning Applied to the Design and Inspection of Reinforced Concrete Bridges: Resilient Methods and Emerging Applications
,”
Structures
,
33
, pp.
3954
3963
.
13.
Chen
,
Y.
,
Feng
,
J.
, and
Sun
,
Q.
,
2018
, “
Lower-Order Symmetric Mechanism Modes and Bifurcation Behavior of Deployable Bar Structures With Cyclic Symmetry
,”
Int. J. Solids Struct.
,
139–140
, pp.
1
14
.
14.
Chen
,
Y.
, and
Feng
,
J.
,
2013
, “
Folding of a Type of Deployable Origami Structures
,”
Int. J. Struct. Stab. Dyn.
,
12
(
06
), p.
1250054
.
15.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
A Framework for the Symmetric Generalisation of the Miura-ori
,”
Int. J. Space Struct.
,
30
(
2
), pp.
141
152
.
16.
Sareh
,
P.
,
Chermprayong
,
P.
,
Emmanuelli
,
M.
,
Nadeem
,
H.
, and
Kovac
,
M.
,
2018
, “
Rotorigami: A Rotary Origami Protective System for Robotic Rotorcraft
,”
Sci. Rob.
,
3
(
22
), p.
eaah5228
.
17.
Wang
,
Z.
,
Shi
,
C.
,
Ding
,
S.
, and
Liang
,
X.
,
2020
, “
Crashworthiness of Innovative Hexagonal Honeycomb-Like Structures Subjected to Out-of-Plane Compression
,”
J. Cent. South Univ.
,
27
(
2
), pp.
621
628
.
18.
Pinson
,
M. B.
,
Stern
,
M.
,
Carruthers Ferrero
,
A.
,
Witten
,
T. A.
,
Chen
,
E.
, and
Murugan
,
A.
,
2017
, “
Self-Folding Origami at Any Energy Scale
,”
Nat. Commun.
,
8
(
1
), pp.
1
8
.
19.
Zhang
,
K. T.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2016
, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
20.
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2010
, “
Origami-Based Robotic Paper-and-Board Packaging for Food Industry
,”
Trends Food Sci. Technol.
,
21
(
3
), pp.
153
157
.
21.
Fang
,
H.
,
Chu
,
S. C. A.
,
Xia
,
Y.
, and
Wang
,
K. W.
,
2018
, “
Programmable Self-Locking Origami Mechanical Metamaterials
,”
Adv. Mater.
,
30
(
15
), p.
1706311
.
22.
Zhai
,
Z.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2018
, “
Origami-Inspired, On-Demand Deployable and Collapsible Mechanical Metamaterials With Tunable Stiffness
,”
Proc. Natl. Acad. Sci.
,
115
(
9
), pp.
2032
2037
.
23.
Sun
,
Y.
,
Ye
,
W.
,
Chen
,
Y.
,
Fan
,
W.
,
Feng
,
J.
, and
Sareh
,
P.
,
2021
, “
Geometric Design Classification of Kirigami-Inspired Metastructures and Metamaterials
,”
Structures
,
33
, pp.
3633
3643
.
24.
Sareh
,
P.
,
2019
, “
The Least Symmetric Crystallographic Derivative of the Developable Double Corrugation Surface: Computational Design Using Underlying Conic and Cubic Curves
,”
Mater. Des.
,
183
, p.
108128
.
25.
McAdams
,
D. A.
, and
Li
,
W.
,
2014
, “
A Novel Method to Design and Optimize Flat-Foldable Origami Structures Through a Genetic Algorithm
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
3
), p.
031008
.
26.
Chen
,
Y.
,
Yan
,
J.
, and
Feng
,
J.
,
2019
, “
Geometric and Kinematic Analyses and Novel Characteristics of Origami-Inspired Structures
,”
Symmetry
,
11
(
9
), p.
1101
.
27.
Sareh
,
P.
, and
Chen
,
Y.
,
2020
, “
Intrinsic non-Flat-Foldability of Two-Tile DDC Surfaces Composed of Glide-Reflected Irregular Quadrilaterals
,”
Int. J. Mech. Sci.
,
185
, p.
105881
.
28.
Chen
,
Y.
,
Sareh
,
P.
,
Yan
,
J.
,
Fallah
,
A. S.
, and
Feng
,
J.
,
2019
, “
An Integrated Geometric-Graph-Theoretic Approach to Representing Origami Structures and Their Corresponding Truss Frameworks
,”
ASME J. Mech. Des.
,
141
(
9
), p.
091402
.
29.
Yan
,
J.
,
Li
,
J.
,
Chen
,
Y.
, and
Feng
,
J.
,
2021
, “
Developing Novel Patterns for six-Fold Origami Structures Using Graph Theory and Optimization Algorithms
,”
J. Build. Struct.
,
43
(
09
), pp.
277
285
.
30.
Chen
,
Y.
,
Yan
,
J.
,
Feng
,
J.
, and
Sareh
,
P.
,
2021
, “
Particle Swarm Optimization-Based Metaheuristic Design Generation of Non-Trivial Flat-Foldable Origami Tessellations With Degree-4 Vertices
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011703
.
31.
Chen
,
Y.
,
Fan
,
L.
,
Bai
,
Y.
,
Feng
,
J.
, and
Sareh
,
P.
,
2020
, “
Assigning Mountain-Valley Fold Lines of Flat-Foldable Origami Patterns Based on Graph Theory and Mixed-Integer Linear Programming
,”
Comput. Struct.
,
239
, p.
106328
.
32.
Li
,
J.
,
Chen
,
Y.
,
Feng
,
X.
,
Feng
,
J.
, and
Sareh
,
P.
,
2021
, “
Computational Modeling and Energy Absorption Behavior of Thin-Walled Tubes With the Kresling Origami Pattern
,”
J. Int. Assoc. Shell Spatial Struct.
,
62
(
2
), pp.
71
81
.
33.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Isomorphic Symmetric Descendants of the Miura-Ori
,”
Smart Materials and Structures
,
24
(
8
), p.
085001
.
34.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of non-Isomorphic Symmetric Descendants of the Miura-ori
,”
Smart Materials and Structures
,
24
(
8
), p.
085002
.
35.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
JSME Int. J., Ser. C
,
45
(
1
), pp.
364
370
.
36.
Chen
,
Y.
,
Lu
,
C.
,
Yan
,
J.
,
Feng
,
J.
, and
Sareh
,
P.
,
2022
, “
Intelligent Computational Design of Scalene-Faceted Flat-Foldable Tessellations
,”
J. Comput. Des. Eng.
,
9
(
5
), pp.
1765
1774
.
37.
Filipov
,
E. T.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.
38.
Lang
,
R. J.
,
Nelson
,
T.
,
Magleby
,
S.
, and
Howell
,
L.
,
2017
, “
Thick Rigidly Foldable Origami Mechanisms Based on Synchronized Offset Rolling Contact Elements
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021013
.
39.
Huffman
,
D. A.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
C-25
(
10
), pp.
1010
1019
.
40.
Hull
,
T.
,
2012
,
Project Origami: Activities for Exploring Mathematics
,
CRC Press
,
Boca Raton London New York
.
41.
Liu
,
S.
,
Lv
,
W.
,
Chen
,
Y.
, and
Lu
,
G.
,
2016
, “
Deployable Prismatic Structures with Rigid Origami Patterns
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031002
.
42.
Zimmermann
,
L.
,
Shea
,
K.
, and
Stanković
,
T.
,
2020
, “
Conditions for Rigid and Flat Foldability of Degree-n Vertices in Origami
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011020
.
43.
Cai
,
J.
,
Liu
,
Y.
,
Ma
,
R.
,
Feng
,
J.
, and
Zhou
,
Y.
,
2017
, “
Nonrigidly Foldability Analysis of Kresling Cylindrical Origami
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041018
.
44.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modelling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc. A
,
466
(
2119
), pp.
2155
2174
.
45.
Chen
,
Y.
,
Fan
,
L.
, and
Feng
,
J.
,
2017
, “
Kinematic of Symmetric Deployable Scissor-Hinge Structures With Integral Mechanism Mode
,”
Comput. Struct.
,
191
, pp.
140
152
.
46.
Chen
,
Y.
, and
Feng
,
J.
,
2016
, “
Improved Symmetry Method for the Mobility of Regular Structures Using Graph Products
,”
J. Struct. Eng.
,
142
(
9
), p.
04016051
.
47.
Kang
,
J. H.
,
Kim
,
H.
,
Santangelo
,
C. D.
, and
Hayward
,
R. C.
,
2019
, “
Enabling Robust Self-Folding Origami by Pre-Biasing Vertex Buckling Direction
,”
Adv. Mater.
,
31
(
39
), p.
0193006
.
48.
Liu
,
K.
, and
Paulino
,
G. H.
,
2017
, “
Nonlinear Mechanics of Non-Rigid Origami: an Efficient Computational Approach
,”
Proc. R. Soc. A
,
473
(
2206
), pp.
1
28
.
49.
Jalali
,
E.
,
Soltanizadeh
,
H.
,
Chen
,
Y.
,
Xie
,
Y. M.
, and
Sareh
,
P.
,
2022
, “
Selective Hinge Removal Strategy for Architecting Hierarchical Auxetic Metamaterials
,”
Commun. Mater.
,
3
(
1
), pp.
1
15
.
50.
Sareh
,
P.
,
2014
,
Symmetric Descendants of the Miura-ori
,
PhD dissertation, University of Cambridge
,
Cambridge, UK
.
51.
Sareh
,
P.
, and
Guest
,
S. D.
,
2012
, “
Tessellating Variations on the Miura Fold Pattern
,”
Proceedings of the IASS-APCS Symposium
,
Seoul, South Korea
,
Vol.
21
,
pp.
1070
1078
.
52.
Zhang
,
T.
,
Kawaguchi
,
K.
, and
Wu
,
M.
,
2018
, “
A Folding Analysis Method for Origami Based on the Frame With Kinematic Indeterminacy
,”
Int. J. Mech. Sci.
,
146
, pp.
234
248
.
53.
Li
,
Y.
,
2020
, “
Motion Paths Finding for Multi-Degree-of-Freedom Mechanisms
,”
Int. J. Mech. Sci.
,
185
, p.
105709
.
54.
Chen
,
Y.
,
Feng
,
J.
, and
Zhang
,
Y.
,
2014
, “
A Necessary Condition for Stability of Kinematically Indeterminate Pin-Jointed Structures With Symmetry
,”
Mech. Res. Commun.
,
60
, pp.
64
73
.
55.
Chen
,
Y.
,
Guest
,
S. D.
,
Fowler
,
P. W.
, and
Feng
,
J.
,
2012
, “
Two-Orbit Switch-Pitch Structures
,”
J. Int. Assoc. Shell Spatial Struct.
,
53
(
3
), pp.
157
162
.
56.
Zhang
,
T.
, and
Kawaguchi
,
K. I.
,
2021
, “
Folding Analysis for Thick Origami with Kinematic Frame Models Concerning Gravity
,”
Autom. Constr.
,
127
, p.
103691
.
57.
Zhang
,
P.
,
Fan
,
W.
,
Chen
,
Y.
,
Feng
,
J.
, and
Sareh
,
P.
,
2022
, “
Structural Symmetry Recognition in Planar Structures Using Convolutional Neural Networks
,”
Eng. Struct.
,
260
, p.
114227
.
You do not currently have access to this content.