Abstract

This article presents a systematic approach for identifying the Cartesian stiffness of a 5-degree-of-freedom (DOF) hybrid robot for machining that includes a parallel mechanism and an A/C wrist. The novelty of this approach is that the elasticities of both links and joints in the parallel mechanism are integrated into the compliance (inverse of stiffness) parameters at the limb level. By identifying the compliance parameters at the limb level rather than at the joint/link level, the number of parameters to be identified is significantly reduced and the complexity of the identification problem is decreased. Based on screw theory, the Cartesian stiffness model of this hybrid robot is established first. Then, by reconstructing this stiffness model, a linear regression model suitable for estimating the compliance parameter is derived. In addition, a two-step systematic procedure for parameter estimation is introduced, including the reconstruction of the design matrix and robust ridge estimation. Finally, both computer simulations and experiments are carried out to demonstrate the validity of the proposed approach. The simulation results show that the predictive deviations of the end-effector deflections identified by ridge estimation are less than those estimated by linear least squares, confirming its greater robustness. The experimental results indicate that the developed method has potential in industrial settings.

References

1.
Verl
,
A.
,
Valente
,
A.
,
Melkote
,
S.
,
Brecher
,
C.
,
Ozturk
,
E.
, and
Tunc
,
L. T.
,
2019
, “
Robots in Machining
,”
CIRP Ann Manuf. Technol.
,
68
(
2
), pp.
799
822
.
2.
Ji
,
W.
, and
Wang
,
L. H.
,
2019
, “
Industrial Robotic Machining: A Review
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1–4
), pp.
1239
1255
.
3.
Yue
,
W.
,
Liu
,
H.
, and
Huang
,
T.
,
2022
, “
An Approach for Predicting Stiffness of a 5-DOF Hybrid Robot for Friction Stir Welding
,”
Mech. Mach. Theory
,
175
, p.
104941
.
4.
Vihtonen
,
L.
,
Puzik
,
A.
, and
Katajarinne
,
T.
,
2008
, “
Comparing Two Robot Assisted Incremental Forming Methods: Incremental Forming by Pressing and Incremental Hammering
,”
Int. J. Mater. Form.
,
1
, pp.
1207
1210
.
5.
Slavkovic
,
N. R.
,
Milutinovic
,
D. S.
, and
Glavonjic
,
M. M.
,
2014
, “
A Method for Off-Line Compensation of Cutting Force-Induced Errors in Robotic Machining by Tool Path Modification
,”
Int. J. Adv. Manuf. Technol.
,
70
(
9–12
), pp.
2083
2096
.
6.
Guillo
,
M.
, and
Dubourg
,
L.
,
2016
, “
Impact & Improvement of Tool Deviation in Friction Stir Welding: Weld Quality & Real-Time Compensation on an Industrial Robot
,”
Robot. Comput.-Integr. Manuf.
,
39
, pp.
22
31
.
7.
Pham
,
M. T.
,
Gautier
,
M.
, and
Poignet
,
P.
,
2001
, “
Identification of Joint Stiffness With Bandpass Filtering
,”
IEEE International Conference on Robotics and Automation
,
Seoul, South Korea
,
May 21–26
, pp.
2867
2872
.
8.
Abele
,
E.
,
Weigold
,
M.
, and
Rothenbucher
,
S.
,
2007
, “
Modeling and Identification of an Industrial Robot for Machining Applications
,”
CIRP Ann-Manuf. Technol.
,
56
(
1
), pp.
387
390
.
9.
Abele
,
E.
,
Rothenbucher
,
S.
, and
Weigold
,
M.
,
2008
, “
Cartesian Compliance Model for Industrial Robots Using Virtual Joints
,”
Prod. Eng. Res. Devel.
,
2
(
3
), pp.
339
343
.
10.
Du
,
L.
,
Zhang
,
T.
, and
Dai
,
X. L.
,
2019
, “
Compliance Error Calibration for Robot Based on Statistical Properties of Single Joint
,”
J. Mech. Sci. Technol.
,
33
(
4
), pp.
1861
1868
.
11.
Olabi
,
A.
,
Damak
,
M.
,
Bearee
,
R.
,
Gibaru
,
O.
, and
Leleu
,
S.
,
2012
, “
Improving the Accuracy of Industrial Robots by Offline Compensation of Joints Errors
,”
IEEE International Conference on Industrial Technology
,
Athens, Greece
,
Mar. 19–21
, pp.
492
497
.
12.
Lehmann
,
C.
,
Olofsson
,
B.
,
Nilsson
,
K.
,
Halbauer
,
M.
,
Haage
,
M.
,
Robertsson
,
A.
,
Sornmo
,
O.
, and
Berger
,
U.
,
2013
, “
Robot Joint Modeling and Parameter Identification Using the Clamping Method
,”
IFAC Proc. Volumes
,
46
(
9
), pp.
813
818
.
13.
Alici
,
G.
, and
Shirinzadeh
,
B.
,
2005
, “
Enhanced Stiffness Modeling, Identification and Characterization for Robot Manipulators
,”
IEEE Trans. Robot.
,
21
(
4
), pp.
554
564
.
14.
Dumas
,
C.
,
Caro
,
S.
,
Garnier
,
S.
, and
Furet
,
B.
,
2011
, “
Joint Stiffness Identification of Six-Revolute Industrial Serial Robots
,”
Robot. Comput.-Integr. Manuf.
,
27
(
4
), pp.
881
888
.
15.
Bu
,
Y.
,
Liao
,
W. H.
,
Tian
,
W.
,
Zhang
,
L.
, and
Li
,
D. W.
,
2017
, “
Modeling and Experimental Investigation of Cartesian Compliance Characterization for Drilling Robot
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
3253
3264
.
16.
Shen
,
N. Y.
,
Guo
,
Z. M.
,
Li
,
J.
,
Tong
,
L.
, and
Zhu
,
K.
,
2018
, “
A Practical Method of Improving Hole Position Accuracy in the Robotic Drilling Process
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2973
2987
.
17.
Li
,
G. Z.
,
Zhang
,
F. H.
,
Fu
,
Y. L.
, and
Wang
,
S. G.
,
2019
, “
Joint Stiffness Identification and Deformation Compensation of Serial Robots Based on Dual Quaternion Algebra
,”
Appl. Sci.
,
9
(
1
), pp.
1
18
.
18.
Lin
,
Y.
,
Zhao
,
H.
, and
Ding
,
H.
,
2017
, “
Posture Optimization Methodology of 6R Industrial Robots for Machining Using Performance Evaluation Indexes
,”
Robot. Comput.-Integr. Manuf.
,
48
, pp.
59
72
.
19.
Xiong
,
G.
,
Ding
,
Y.
, and
Zhu
,
L. M.
,
2019
, “
Stiffness-Based Pose Optimization of an Industrial Robot for Five-Axis Milling
,”
Robot. Comput.-Integr. Manuf.
,
55
, pp.
19
28
.
20.
Xiong
,
G.
,
Ding
,
Y.
, and
Zhu
,
L. M.
,
2017
, “
A Feed-Direction Stiffness Based Trajectory Optimization Method for a Milling Robot
,”
International Conference on Intelligent Robotics and Applications
,
Wuhan, China
,
Aug. 16–18
,
Springer
,
Cham
, 10463.
21.
Yang
,
K.
,
Yang
,
W. Y.
,
Cheng
,
G. D.
, and
Lu
,
B. R.
,
2018
, “
A New Methodology for Joint Stiffness Identification of Heavy Duty Industrial Robots With the Counterbalancing System
,”
Robot. Comput.-Integr. Manuf.
,
53
, pp.
58
71
.
22.
Cordes
,
M.
, and
Hintz
,
W.
,
2017
, “
Offline Simulation of Path Deviation Due to Joint Compliance and Hysteresis for Robot Machining
,”
Int. J. Adv. Manuf. Technol.
,
90
(
1–4
), pp.
1075
1083
.
23.
Chen
,
C.
,
Peng
,
F. Y.
,
Yan
,
R.
,
Li
,
Y. T.
,
Wei
,
D. Q.
,
Fan
,
Z.
,
Tang
,
X. W.
, and
Zhu
,
Z. R.
,
2019
, “
Stiffness Performance Index Based Posture and Feed Orientation Optimization in Robotic Milling Process
,”
Robot. Comput.-Integr. Manuf.
,
55
, pp.
29
40
.
24.
Klimchik
,
A.
,
Furet
,
B.
,
Caro
,
S.
, and
Pashkevich
,
A.
,
2015
, “
Identification of the Manipulator Stiffness Model Parameters in Industrial Environment
,”
Mech. Mach. Theory
,
90
, pp.
1
22
.
25.
Liu
,
H. T.
,
Huang
,
T.
,
Chetwynd
,
D. G.
, and
Kecskemethy
,
A.
,
2017
, “
Stiffness Modeling of Parallel Mechanisms at Limb and Joint/Link Levels
,”
IEEE Trans. Robot.
,
33
(
3
), pp.
734
741
.
26.
Huang
,
T.
,
Dong
,
C. L.
,
Liu
,
H. T.
,
Qin
,
X. D.
,
Mei
,
J. P.
,
Liu
,
Q.
, and
Wang
,
M. X.
,
2018
, “
Five-Degree-of-Freedom Hybrid Robot With Rotational Supports
,” International Patent Application No. PCT/CN2016/077464 and U.S. Patent Application No. 9943967.
27.
Wu
,
L.
,
Dong
,
C. L.
,
Wang
,
G. F.
,
Liu
,
H. T.
, and
Huang
,
T.
,
2021
, “
An Approach to Predict Lower-Order Dynamic Behaviors of a 5-DOF Hybrid Robot Using a Minimum set of Generalized Coordinates
,”
Robot. Comput.-Integr. Manuf.
,
67
, p.
102024
.
28.
Huang
,
T.
,
Yang
,
S. F.
,
Wang
,
M. X.
,
Sun
,
T.
, and
Chetwynd
,
D. G.
,
2015
, “
An Approach to Determining the Unknown Twist/Wrench Subspaces of Lower Mobility Serial Kinematic Chains
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031003
.
29.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2013
, “
CAD-Based Approach for Identification of Elasto-Static Parameters of Robotic Manipulators
,”
Finite Elem. Anal. Des.
,
75
, pp.
19
30
.
30.
Kircanski
,
N. M.
, and
Goldenberg
,
A. A.
,
1997
, “
An Experimental Study of Nonlinear Stiffness, Hysteresis, and Friction Effects in Robot Joints With Harmonic Drives and Torque Sensors
,”
Int. J. Robot. Res.
,
16
(
2
), pp.
214
239
.
31.
Wu
,
Y.
,
Klimchik
,
A.
,
Caro
,
S.
,
Furet
,
B.
, and
Pashkevich
,
A.
,
2015
, “
Geometric Calibration of Industrial Robots Using Enhanced Partial Pose Measurements and Design of Experiments
,”
Robot. Comput.-Integr. Manuf.
,
35
, pp.
151
168
.
32.
Montgomery
,
D. C.
,
Peck
,
E. A.
, and
Vining
,
G. G.
,
2021
,
Introduction to Linear Regression Analysis
, 6th ed.,
John Wiley & Sons
,
New York
.
33.
Menq
,
C. H.
,
Borm
,
J. H.
, and
Lai
,
J. Z.
,
1989
, “
Identification and Observability Measure of a Basis Set of Error Parameters in Robot Calibration
,”
ASME J. Mech. Des.
,
111
(
4
), pp.
513
518
.
34.
Huang
,
T.
,
Zhao
,
D.
,
Yin
,
F. W.
,
Tian
,
W. J.
, and
Chetwynd
,
D. G.
,
2019
, “
Kinematic Calibration of a 6-DOF Hybrid Robot by Considering Multicollinearity in the Identification Jacobian
,”
Mech. Mach. Theory
,
131
, pp.
371
384
.
35.
Hoerl
,
A. E.
, and
Kennard
,
R. W.
,
1970
, “
Ridge Regression: Biased Estimation for Nonorthogonal Problems
,”
Technometrics
,
12
(
1
), pp.
55
67
.
36.
Hoerl
,
A. E.
, and
Kennard
,
R. W.
,
1970
, “
Ridge Regression: Applications to Nonorthogonal Problems
,”
Technometrics
,
12
(
1
), pp.
69
82
.
37.
Golub
,
G. H.
,
Heath
,
M.
, and
Wahba
,
G.
,
1979
, “
Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter
,”
Technometrics
,
21
(
2
), pp.
215
223
.
38.
Hansen
,
P. C.
,
1992
, “
Analysis of Discrete Ill-Posed Problems by Means of the L-Curve
,”
SIAM Rev.
,
34
(
4
), pp.
561
580
.
39.
Hansen
,
P. C.
, and
Oleary
,
D. P.
,
1993
, “
The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems
,”
SIAM J. Sci. Comput.
,
14
(
6
), pp.
1487
1503
.
40.
Nguyen
,
V.
, and
Melkote
,
S.
,
2021
, “
Hybrid Statistical Modelling of the Frequency Response Function of Industrial Robots
,”
Robot. Comput.-Integr. Manuf.
,
70
, p.
102134
.
41.
Dong
,
C.
,
Liu
,
H.
,
Xiao
,
J.
, and
Huang
,
T.
,
2021
, “
Dynamic Modeling and Design of a 5-DOF Hybrid Robot for Machining
,”
Mech. Mach. Theory
,
165
, p.
104438
.
You do not currently have access to this content.