Abstract

The foot sole of the biped robot is an important factor for stable walking. In this study, the limitations of existing bipedal robot soles are introduced and the necessity for the development of a new sole mechanism is presented. Inspired by a robot sole based on the granular jamming effect, we have developed a variable stiffness sole (VSS), which adapts to the shape of obstacles on the ground in compliant mode and provides robust support in stiff mode. Finally, the performance of the VSS is verified by several experiments integrating the VSS with the real humanoid robot platform RoK-3. The experimental results verified that the VSS is advantageous in uneven terrain walking.

References

1.
Hirai
,
K.
,
Hirose
,
M.
,
Haikawa
,
Y.
, and
Takenaka
,
T.
,
1998
, “
The Development of Honda Humanoid Robot
,”
1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146)
,
Leuven, Belgium
,
May 20
, Vol. 2, pp.
1321
1326
.
2.
Yamaguchi
,
J.
,
Takanishi
,
A.
, and
Kato
,
I.
,
1995
, “
Experimental Development of a Foot Mechanism With Shock Absorbing Material for Acquisition of Landing Surface Position Information and Stabilization of Dynamic Biped Walking
,”
Proceedings of 1995 IEEE International Conference on Robotics and Automation
,
Nagoya, Japan
,
May 21–27
, Vol. 3, pp.
2892
2899
.
3.
Choi
,
W.
,
Zhou
,
C.
,
Medrano-Cerda
,
G. A.
,
Caldwell
,
D. G.
, and
Tsagarakis
,
N. G.
,
2015
, “
A New Foot Sole Design for Humanoids Robots Based on Viscous Air Damping Mechanism
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 3
, pp.
4498
4503
.
4.
Radford
,
N. A.
,
Strawser
,
P.
,
Hambuchen
,
K.
,
Mehling
,
J. S.
,
Verdeyen
,
W. K.
,
Donnan
,
A. S.
,
Holley
,
J.
,
Sanchez
,
J.
,
Nguyen
,
V.
,
Bridgwater
,
L.
, and
Berka
,
R.
,
2015
, “
Valkyrie: Nasa’s First Bipedal Humanoid Robot
,”
J. Field Rob.
,
32
(
3
), pp.
397
419
.
5.
Nelson
,
G.
,
Saunders
,
A.
, and
Playter
,
R.
,
2019
, “The Petman and Atlas Robots at Boston Dynamics,”
Humanoid Robotics: A Reference
,
A.
Goswami
, and
P.
Vadakkepat
, eds.,
Springer
,
Dordrecht
, pp.
169
186
.
6.
David
,
A.
,
Chardonnet
,
J.-R.
,
Kheddar
,
A.
,
Kaneko
,
K.
, and
Yokoi
,
K.
,
2008
, “
Study of an External Passive Shock-Absorbing Mechanism for Walking Robots
,”
Humanoids 2008 – 8th IEEE-RAS International Conference on Humanoid Robots
,
Daejeon, South Korea
,
Dec. 1–3
, pp.
1204
1210
.
7.
Piazza
,
C.
,
Della Santina
,
C.
,
Gasparri
,
G. M.
,
Catalano
,
M. G.
,
Grioli
,
G.
,
Garabini
,
M.
, and
Bicchi
,
A.
,
2016
, “
Toward an Adaptive Foot for Natural Walking
,”
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids)
,
Cancun, Mexico
,
Nov. 15–17
, pp.
1204
1210
.
8.
Hashimoto
,
K.
,
Hosobata
,
T.
,
Sugahara
,
Y.
,
Mikuriya
,
Y.
,
Sunazuka
,
H.
,
Kawase
,
M.
,
Lim
,
H.
, and
Takanishi
,
A.
,
2005
, “
Development of Foot System of Biped Walking Robot Capable of Maintaining Four-Point Contact
,”
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton, AB, Canada
,
Aug. 2–6
, pp.
1361
1366
.
9.
Ohtsuka
,
S.
,
Endo
,
G.
,
Fukushima
,
E. F.
, and
Hirose
,
S.
,
2010
, “
Development of Terrain Adaptive Sole for Multi-Legged Walking Robot
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
5354
5359
.
10.
Kang
,
H.
,
Hashimoto
,
K.
,
Kondo
,
H.
,
Hattori
,
K.
,
Nishikawa
,
K.
,
Hama
,
Y.
,
Lim
,
H.
,
Takanishi
,
A.
,
Suga
,
K.
, and
Kato
,
K.
,
2010
, “
Realization of Biped Walking on Uneven Terrain by New Foot Mechanism Capable of Detecting Ground Surface
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, pp.
5167
5172
.
11.
Seo
,
J.
, and
Yi
,
B.
,
2009
, “
Modeling and Analysis of a Biomimetic Foot Mechanism
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 11–15
, pp.
1472
1477
.
12.
Fondahl
,
K.
,
Kuehn
,
D.
,
Beinersdorf
,
F.
,
Bernhard
,
F.
,
Grimminger
,
F.
,
Schilling
,
M.
,
Stark
,
T.
, and
Kirchner
,
F.
,
2012
, “
An Adaptive Sensor Foot for a Bipedal and Quadrupedal Robot
,”
2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Rome, Italy
,
June 24–27
, pp.
270
275
.
13.
Rice
,
J. J.
,
Schimmels
,
J. M.
, and
Huang
,
S.
,
2015
, “
Design and Evaluation of a Passive Ankle Prosthesis With Powered Push-Off
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021012
.
14.
Hicks
,
J.
,
1954
, “
The Mechanics of the Foot: II. The Plantar Aponeurosis and the Arch
,”
J. Anat.
,
88
(
Pt 1
), p.
25
.
15.
Hu
,
J.
,
Xiao
,
C.
, and
Wen
,
T.
,
2021
, “
A Novel Tunable Stiffness Mechanism Using Filament Jamming
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061015
.
16.
Gao
,
Y.
,
Huang
,
X.
,
Mann
,
I. S.
, and
Su
,
H.-J.
,
2020
, “
A Novel Variable Stiffness Compliant Robotic Gripper Based on Layer Jamming
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051013
.
17.
Brown
,
E.
,
Rodenberg
,
N.
,
Amend
,
J.
,
Mozeika
,
A.
,
Steltz
,
E.
,
Zakin
,
M. R.
,
Lipson
,
H.
, and
Jaeger
,
H. M.
,
2010
, “
Universal Robotic Gripper Based on the Jamming of Granular Material
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
44
), p.
18 809
.
18.
Najmuddin
,
A.
,
Fukuoka
,
Y.
, and
Ochiai
,
S.
,
2012
, “
Experimental Development of Stiffness Adjustable Foot Sole for Use by Bipedal Robots Walking on Uneven Terrain
,”
2012 IEEE/SICE International Symposium on System Integration (SII)
,
Fukuoka, Japan
,
Dec. 16–18
, pp.
248
253
.
19.
Najmuddin
,
I. A.
,
Ishijima
,
E.
, and
Fukuoka
,
Y.
,
2012
, “
2A1-T01 Realization of Bipedal Robot Walking on Uneven Surface by Utilizing Stiffness-Variable Foot Sole Mechanism (Walking Robot (1))
,”
The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec) 2012
,
Hamamatsu, Japan
,
May 27–29
, pp. 2A1–T01_1.
20.
Hauser
,
S.
,
Mutlu
,
M.
,
Banzet
,
P.
, and
Ijspeert
,
A.
,
2018
, “
Compliant Universal Grippers as Adaptive Feet in Legged Robots
,”
Adv. Rob.
,
32
(
15
), pp.
825
836
.
21.
Lathrop
,
E.
,
Adibnazari
,
I.
,
Gravish
,
N.
, and
Tolley
,
M. T.
,
2020
, “
Shear Strengthened Granular Jamming Feet for Improved Performance Over Natural Terrain
,”
2020 3rd IEEE International Conference on Soft Robotics (RoboSoft)
,
New Haven, CT
,
May 15–July 15
, pp.
388
393
.
22.
Nadia
,
C
,
John
,
A
,
Bill
,
C
, and
Sami
,
F
,
2016
, “
Soft Robotics Commercialization: Jamming Grippers From Research to Product.
Soft Rob.
,
3
(
4
), pp.
213
222
.
23.
Jeong
,
H.
,
Sim
,
O.
,
Bae
,
H.
,
Lee
,
K.
,
Oh
,
J.
, and
Oh
,
J.-H.
,
2017
, “
Biped Walking Stabilization Based on Foot Placement Control Using Capture Point Feedback
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, IEEE, pp.
5263
5269
.
24.
Jeong
,
H.
,
Lee
,
K.
,
Kim
,
W.
,
Lee
,
I.
, and
Oh
,
J.-H.
,
2020
, “
Design and Control of the Rapid Legged Platform Gazelle
,”
Mechatronics
,
66
(
1
), p.
102319
.
25.
Han
,
Y.-H.
,
Namgung
,
J.
, and
Cho
,
B.-K.
,
2022
, “
Walking Control Framework on Uneven Terrain Using Variable Stiffness Sole
,”
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
Oct. 23–27
, pp.
8328
8335
.
You do not currently have access to this content.