Abstract

Mechanical interference and singularities within the reachable workspace often restrict the orientational workspace of parallel robots. Introducing kinematic redundancy can alleviate this limitation. This paper discusses the possibility to produce unlimited rotation of the platform of a tripedal (6 + 3)-degree-of-freedom kinematically redundant parallel robot. The articulated platform of such a robot has three degrees of mobility. The platforms considered here are planar linkages that contain either revolute or prismatic joints. It is shown that at least two revolute joints are required to produce unlimited rotation with appropriate design and initial configuration, while the platforms with two prismatic joints cannot produce such rotations without crossing a singularity.

References

1.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
.
2.
Schreiber
,
L.-T.
, and
Gosselin
,
C.
,
2019
, “
Schönflies Motion PARAllel Robot (SPARA): A Kinematically Redundant Parallel Robot With Unlimited Rotation Capabilities
,”
IEEE/ASME Trans. Mechatron.
,
24
(
5
), pp.
2273
2281
.
3.
Company
,
O.
,
Pierrot
,
F.
,
Nabat
,
V.
, and
de la O Rodriguez
,
M.
,
2005
, “
Schoenflies Motion Generator: A New Non Redundant Parallel Manipulator With Unlimited Rotation Capability
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
3250
3255
.
4.
Gosselin
,
C.
,
Isaksson
,
M.
,
Marlow
,
K.
, and
Laliberté
,
T.
,
2016
, “
Workspace and Sensitivity Analysis of a Novel Nonredundant Parallel SCARA Robot Featuring Infinite Tool Rotation
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
776
783
.
5.
Babin
,
V.
, and
Gosselin
,
C.
,
2018
, “
Picking, Grasping, or Scooping Small Objects Lying on Flat Surfaces: A Design Approach
,”
Int. J. Rob. Res.
,
37
(
12
), pp.
1484
1499
.
6.
Gosselin
,
C.
,
Laliberté
,
T.
, and
Veillette
,
A.
,
2015
, “
Singularity-Free Kinematically Redundant Planar Parallel Mechanisms With Unlimited Rotational Capability
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
457
467
.
7.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2016
, “
Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
286
300
.
8.
Schreiber
,
L.-T.
, and
Gosselin
,
C.
,
2017
, “
Passively Driven Redundant Spherical Joint With Very Large Range of Motion
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031014
.
9.
Stepanenko
,
O.
,
Bonev
,
I. A.
, and
Zlatanov
,
D.
,
2019
, “
A New 4-DOF Fully Parallel Robot With Decoupled Rotation for Five-Axis Micromachining Applications
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031010
.
10.
Wen
,
K.
,
Nguyen
,
T. S.
,
Harton
,
D.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2021
, “
A Backdrivable Kinematically Redundant (6 + 3)-Degree-of-Freedom Hybrid Parallel Robot for Intuitive Sensorless Physical Human–Robot Interaction
,”
IEEE Trans. Rob.
,
37
(
4
), pp.
1222
1238
.
11.
Luces
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2017
, “
A Review of Redundant Parallel Kinematic Mechanisms
,”
J. Intell. Rob. Syst.
,
86
(
2
), pp.
175
198
.
12.
Wen
,
K.
, and
Gosselin
,
C.
,
2019
, “
Kinematically Redundant Hybrid Robots With Simple Singularity Conditions and Analytical Inverse Kinematic Solutions
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3828
3835
.
13.
Siciliano
,
B.
,
1990
, “
Kinematic Control of Redundant Robot Manipulators: A Tutorial
,”
J. Intell. Rob. Syst.
,
3
(
3
), pp.
201
212
.
14.
Yoshikawa
,
T.
,
1985
, “
Manipulability and Redundancy Control of Robotic Mechanisms
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
St. Louis, MO
,
Mar. 25–28
, Vol.
2
, pp.
1004
1009
.
15.
Klein
,
C. A.
, and
Blaho
,
B. E.
,
1987
, “
Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators
,”
Int. J. Rob. Res.
,
6
(
2
), pp.
72
83
.
16.
Liégeois
,
A.
,
1977
, “
Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms
,”
IEEE Trans. Syst. Man Cybern.
,
7
(
12
), pp.
868
871
.
17.
Voglewede
,
P.
, and
Ebert-Uphoff
,
I.
,
2004
, “
Measuring ‘Closeness’ to Singularities for Parallel Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Orleans, LA
,
Apr. 26–May 1
, pp.
4539
4544
.
18.
Wolf
,
A.
, and
Shoham
,
M.
,
2003
, “
Investigation of Parallel Manipulators Using Linear Complex Approximation
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
564
572
.
19.
Hesselbach
,
J.
,
Bier
,
C.
,
Campos
,
A.
, and
Lowe
,
H.
,
2005
, “
Direct Kinematic Singularity Detection of a Hexa Parallel Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
3238
3243
.
20.
Chang
,
W.-T.
,
Lin
,
C.-C.
, and
Lee
,
J.-J.
,
2003
, “
Force Transmissibility Performance of Parallel Manipulators
,”
J. Rob. Syst.
,
20
(
11
), pp.
659
670
.
21.
Liu
,
X.-J.
,
Wu
,
C.
, and
Wang
,
J.
,
2012
, “
A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041001
.
22.
Cardou
,
P.
,
Bouchard
,
S.
, and
Gosselin
,
C.
,
2010
, “
Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
166
173
.
23.
Crameri
,
F.
,
2021
, “
Scientific Colour Maps
, ”
Zenodo
.
24.
Lee
,
M. C.
, and
Park
,
M. G.
,
2003
, “
Artificial Potential Field Based Path Planning for Mobile Robots Using a Virtual Obstacle Concept
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Kobe, Japan
,
July 20–24
, pp.
735
740
.
25.
Barraquand
,
J.
, and
Latombe
,
J.-C.
,
1990
, “
A Monte-Carlo Algorithm for Path Planning With Many Degrees of Freedom
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Cincinnati, OH
,
May 13–18
,
IEEE Computer Society Press
, pp.
1712
1717
.
26.
Tsardoulias
,
E. G.
,
Iliakopoulou
,
A.
,
Kargakos
,
A.
, and
Petrou
,
L.
,
2016
, “
A Review of Global Path Planning Methods for Occupancy Grid Maps Regardless of Obstacle Density
,”
J. Intell. Rob. Syst.
,
84
(
1–4
), pp.
829
858
.
27.
Yigit
,
A.
,
Breton
,
D.
,
Zhou
,
Z.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2023
, “
Kinematic Analysis and Design of a Novel (6 + 3)-DoF Parallel Robot With Fixed Actuators
,”
Proceedings of the IEEE International Conference on Robotic and Automation
,
London, UK
, pp.
9693
9699
.
28.
Gosselin
,
C.
, and
Hamel
,
J.-F.
,
1994
, “
The Agile Eye: A High-Performance Three-Degree-of-Freedom Camera-Orienting Device
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
San Diego, CA
,
May 8–13
, pp.
781
786
.
You do not currently have access to this content.