Graphical Abstract Figure
Abstract
Cable-driven parallel robots (CDPRs) are easy to implement modular and reconfigurable design, which effectively meets the requirements of flexible production. To clarify the influence of reconfiguration on the performance of a modular designed prototype of the TBot high-speed robot, analysis methods and indexes for the force output and moment constraint performance of CDPRs with co-driven parallel cables are proposed. The influence of reconfiguration on the omnidirectional and directional performance of TBot is discussed, showing the possibility of achieving a more compact layout by reconfiguring the base into slender shapes. The recommended reconfiguration range of TBot is determined to achieve acceptable performance.
References
1.
Gosselin
, C.
, 2014
, “Cable-Driven Parallel Mechanisms: State of the Art and Perspectives
,” Mech. Eng. Rev.
, 19
(4
), pp. 1
–17
. 2.
Qian
, L.
, Yao
, R.
, Sun
, J.
, Xu
, J.
, Pan
, Z.
, and Jiang
, P.
, 2020
, “Fast: Its Scientific Achievements and Prospects
,” Innovation
, 1
(3
), p. 100053
. 3.
El-Ghazaly
, G.
, Gouttefarde
, M.
, and Creuze
, V.
, Adaptive Terminal Sliding Mode Control of a Redundantly-Actuated Cable-Driven Parallel Manipulator: Cogiro,” Cable-Driven Parallel Robots (CableCon 2023). Mechanisms and Machine Science, Vol. 32
, A.
Pott
, and T.
Bruckmann
, eds., Springer
, Cham
, pp. 179
–200
.4.
Ferravante
, V.
, Riva
, E.
, Taghavi
, M.
, Braghin
, F.
, and Bock
, T.
, 2019
, “Dynamic Analysis of High Precision Construction Cable-Driven Parallel Robots
,” Mech. Mach. Theory
, 135
, pp. 54
–64
. 5.
Kawamura
, S.
, Kino
, H.
, and Won
, C.
, 2000
, “High-Speed Manipulation by Using Parallel Wire-Driven Robots
,” Robotica
, 18
(1
), pp. 215
–220
. 6.
Dekker
, R.
, Khajepour
, A.
, and Behzadipour
, S.
, 2006
, “Design and Testing of an Ultra-High-Speed Cable Robot
,” Int. J. Rob. Autom.
, 21
(1
), pp. 25
–34
. 7.
Zhang
, Z.
, Shao
, Z.
, You
, Z.
, Tang
, X.
, Zi
, B.
, Yang
, G.
, Gosselin
, C.
, and Caro
, S.
, 2022
, “State-of-the-Art on Theories and Applications of Cable-Driven Parallel Robots
,” Front. Mech. Eng.
, 17
(3
), p. 37
. 8.
Barnett
, E.
, and Gosselin
, C.
, 2015
, “Large-Scale 3D Printing With a Cable-Suspended Robot
,” Addit. Manuf.
, 7
, pp. 27
–44
. 9.
Zi
, B.
, Wang
, N.
, Qian
, S.
, and Bao
, K.
, 2019
, “Design, Stiffness Analysis and Experimental Study of a Cable-Driven Parallel 3D Printer
,” Mech. Mach. Theory
, 132
, pp. 207
–222
. 10.
Bosscher
, P.
, Williams
, R. L.
, and Tummino
, M.
, 2005
, “A Concept for Rapidly-Deployable Cable Robot Search and Rescue Systems
,” 29th Mechanisms and Robotics Conference
, Long Beach, Canada
, Sept. 24–28
, pp. 589
–598
.11.
Zhang
, Z. K.
, Shao
, Z. F.
, Wang
, L. P.
, and Shih
, A. J.
, Optimal Design of a High-Speed Pick-and-Place Cable-Driven Parallel Robot,” Cable-Driven Parallel Robots (CableCon 2018). Mechanisms and Machine Science, Vol. 53
, C.
Gosselin
, P.
Cardou
, T.
Bruckmann
, and A.
Pott
, eds., Springer
, Cham
, pp. 340
–352
.12.
Zhang
, Z.
, Shao
, Z.
, Peng
, F.
, Li
, H.
, and Wang
, L.
, 2020
, “Workspace Analysis and Optimal Design of a Translational Cable-Driven Parallel Robot With Passive Springs
,” ASME J. Mech. Rob.
, 12
(5
), p. 051005
. 13.
Droeder
, K.
, Hoffmeister
, H. W.
, and Tounsi
, T.
, 2016
, “Flexible and Space-Saving Machine Concept for Micro Production
,” 7th CIRP Conference on High Performance Cutting (HPC 2016)
, Chemnitz, Germany
, May 31–June 2
, pp. 181
–184
.14.
Zhang
, Z.
, Shao
, Z.
, and Wang
, L.
, 2020
, “Optimization and Implementation of a High-Speed 3-DOFs Translational Cable-Driven Parallel Robot
,” Mech. Mach. Theory
, 145
, p. 103693
. 15.
Zhang
, Z.
, Xie
, G.
, Shao
, Z.
, and Gosselin
, C.
, 2022
, “Kinematic Calibration of Cable-Driven Parallel Robots Considering the Pulley Kinematics
,” Mech. Mach. Theory
, 169
, p. 104648
. 16.
Xie
, G.
, Zhang
, Z.
, Shao
, Z.
, and Wang
, L.
, 2022
, “Research on the Orientation Error of the Translational Cable-Driven Parallel Robots
,” ASME J. Mech. Rob.
, 14
(3
), p. 031003
. 17.
Duan
, J.
, Shao
, Z.
, Zhang
, Z.
, and Peng
, F.
, 2022
, “Performance Simulation and Energetic Analysis of TBot High-Speed Cable-Driven Parallel Robot
,” ASME J. Mech. Rob.
, 14
(2
), p. 024504
. 18.
Bouchard
, S.
, Gosselin
, C.
, and Moore
, B.
, 2010
, “On the Ability of a Cable-Driven Robot to Generate a Prescribed Set of Wrenches
,” ASME J. Mech. Rob.
, 2
(1
), p. 011010
. 19.
Sun
, Y.
, Guo
, Y.
, Song
, C.
, and Lau
, D.
, 2022
, “Wrench-Feasible Workspace-Based Design of Hybrid Thruster and Cable Driven Parallel Robots
,” Mech. Mach. Theory
, 172
, p. 104758
. 20.
Rasheed
, T.
, Long
, P.
, and Caro
, S.
, 2020
, “Wrench-Feasible Workspace of Mobile Cable-Driven Parallel Robots
,” ASME J. Mech. Rob.
, 12
(3
), p. 031009
. 21.
Erskine
, J.
, Chriette
, A.
, and Caro
, S.
, 2019
, “Wrench Analysis of Cable-Suspended Parallel Robots Actuated by Quadrotor Unmanned Aerial Vehicles
,” ASME J. Mech. Rob.
, 11
(2
), p. 020909
. 22.
Liu
, S.
, Mei
, J.
, Wang
, P.
, and Guo
, F.
, 2023
, “Optimal Design of a Coupling-Input Cable-Driven Parallel Robot With Passive Limbs Based on Force Space Analysis
,” Mech. Mach. Theory
, 184
, p. 105296
. 23.
Eden
, J.
, Lau
, D.
, Tan
, Y.
, and Oetomo
, D.
, 2016
, “Available Acceleration Set for the Study of Motion Capabilities for Cable-Driven Robots
,” Mech. Mach. Theory
, 105
, pp. 320
–336
. 24.
Chan
, A.
, Lau
, D.
, and Lam
, S.
, 2023
, “Wrench and Twist Capability Analysis for Cable-Driven Parallel Robots With Consideration of the Actuator Torque-Speed Relationship
,” IEEE Trans. Rob.
, 39
(4
), pp. 3185
–3199
. 25.
Hussein
, H.
, Santos
, J. C.
, Izard
, J.-B.
, and Gouttefarde
, M.
, 2021
, “Smallest Maximum Cable Tension Determination for Cable-Driven Parallel Robots
,” IEEE Trans. Rob.
, 37
(4
), pp. 1186
–1205
. 26.
Duan
, J. H.
, Liu
, H. Q.
, Zhang
, Z. K.
, Shao
, Z. F.
, Meng
, X. J.
, and Lv
, J. G.
, Reconfiguration and Performance Evaluation of TBot Cable-Driven Parallel Robot,” Cable-Driven Parallel Robots (CableCon 2023). Mechanisms and Machine Science, Vol. 132
, S.
Caro
, A.
Pott
, and T.
Bruckmann
, eds., Springer
, Cham
, pp. 283
–294
.27.
Duan
, X.
, Mi
, J.
, and Zhao
, Z.
, 2016
, “Vibration Isolation and Trajectory Following Control of a Cable Suspended Stewart Platform
,” Machines
, 4
(4
), pp. 18
–20
. 28.
Althoff
, M.
, Stursberg
, O.
, and Buss
, M.
, 2010
, “Computing Reachable Sets of Hybrid Systems Using a Combination of Zonotopes and Polytopes
,” Nonlinear Anal.: Hybrid Syst.
, 4
(2
), pp. 233
–249
. Copyright © 2024 by ASME
You do not currently have access to this content.