Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Cable-driven parallel robots (CDPRs) are easy to implement modular and reconfigurable design, which effectively meets the requirements of flexible production. To clarify the influence of reconfiguration on the performance of a modular designed prototype of the TBot high-speed robot, analysis methods and indexes for the force output and moment constraint performance of CDPRs with co-driven parallel cables are proposed. The influence of reconfiguration on the omnidirectional and directional performance of TBot is discussed, showing the possibility of achieving a more compact layout by reconfiguring the base into slender shapes. The recommended reconfiguration range of TBot is determined to achieve acceptable performance.

References

1.
Gosselin
,
C.
,
2014
, “
Cable-Driven Parallel Mechanisms: State of the Art and Perspectives
,”
Mech. Eng. Rev.
,
19
(
4
), pp.
1
17
.
2.
Qian
,
L.
,
Yao
,
R.
,
Sun
,
J.
,
Xu
,
J.
,
Pan
,
Z.
, and
Jiang
,
P.
,
2020
, “
Fast: Its Scientific Achievements and Prospects
,”
Innovation
,
1
(
3
), p.
100053
.
3.
El-Ghazaly
,
G.
,
Gouttefarde
,
M.
, and
Creuze
,
V.
, Adaptive Terminal Sliding Mode Control of a Redundantly-Actuated Cable-Driven Parallel Manipulator: Cogiro,”
Cable-Driven Parallel Robots (CableCon 2023). Mechanisms and Machine Science, Vol. 32
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer
,
Cham
, pp.
179
200
.
4.
Ferravante
,
V.
,
Riva
,
E.
,
Taghavi
,
M.
,
Braghin
,
F.
, and
Bock
,
T.
,
2019
, “
Dynamic Analysis of High Precision Construction Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
135
, pp.
54
64
.
5.
Kawamura
,
S.
,
Kino
,
H.
, and
Won
,
C.
,
2000
, “
High-Speed Manipulation by Using Parallel Wire-Driven Robots
,”
Robotica
,
18
(
1
), pp.
215
220
.
6.
Dekker
,
R.
,
Khajepour
,
A.
, and
Behzadipour
,
S.
,
2006
, “
Design and Testing of an Ultra-High-Speed Cable Robot
,”
Int. J. Rob. Autom.
,
21
(
1
), pp.
25
34
.
7.
Zhang
,
Z.
,
Shao
,
Z.
,
You
,
Z.
,
Tang
,
X.
,
Zi
,
B.
,
Yang
,
G.
,
Gosselin
,
C.
, and
Caro
,
S.
,
2022
, “
State-of-the-Art on Theories and Applications of Cable-Driven Parallel Robots
,”
Front. Mech. Eng.
,
17
(
3
), p.
37
.
8.
Barnett
,
E.
, and
Gosselin
,
C.
,
2015
, “
Large-Scale 3D Printing With a Cable-Suspended Robot
,”
Addit. Manuf.
,
7
, pp.
27
44
.
9.
Zi
,
B.
,
Wang
,
N.
,
Qian
,
S.
, and
Bao
,
K.
,
2019
, “
Design, Stiffness Analysis and Experimental Study of a Cable-Driven Parallel 3D Printer
,”
Mech. Mach. Theory
,
132
, pp.
207
222
.
10.
Bosscher
,
P.
,
Williams
,
R. L.
, and
Tummino
,
M.
,
2005
, “
A Concept for Rapidly-Deployable Cable Robot Search and Rescue Systems
,”
29th Mechanisms and Robotics Conference
,
Long Beach, Canada
,
Sept. 24–28
, pp.
589
598
.
11.
Zhang
,
Z. K.
,
Shao
,
Z. F.
,
Wang
,
L. P.
, and
Shih
,
A. J.
, Optimal Design of a High-Speed Pick-and-Place Cable-Driven Parallel Robot,”
Cable-Driven Parallel Robots (CableCon 2018). Mechanisms and Machine Science, Vol. 53
,
C.
Gosselin
,
P.
Cardou
,
T.
Bruckmann
, and
A.
Pott
, eds.,
Springer
,
Cham
, pp.
340
352
.
12.
Zhang
,
Z.
,
Shao
,
Z.
,
Peng
,
F.
,
Li
,
H.
, and
Wang
,
L.
,
2020
, “
Workspace Analysis and Optimal Design of a Translational Cable-Driven Parallel Robot With Passive Springs
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051005
.
13.
Droeder
,
K.
,
Hoffmeister
,
H. W.
, and
Tounsi
,
T.
,
2016
, “
Flexible and Space-Saving Machine Concept for Micro Production
,”
7th CIRP Conference on High Performance Cutting (HPC 2016)
,
Chemnitz, Germany
,
May 31–June 2
, pp.
181
184
.
14.
Zhang
,
Z.
,
Shao
,
Z.
, and
Wang
,
L.
,
2020
, “
Optimization and Implementation of a High-Speed 3-DOFs Translational Cable-Driven Parallel Robot
,”
Mech. Mach. Theory
,
145
, p.
103693
.
15.
Zhang
,
Z.
,
Xie
,
G.
,
Shao
,
Z.
, and
Gosselin
,
C.
,
2022
, “
Kinematic Calibration of Cable-Driven Parallel Robots Considering the Pulley Kinematics
,”
Mech. Mach. Theory
,
169
, p.
104648
.
16.
Xie
,
G.
,
Zhang
,
Z.
,
Shao
,
Z.
, and
Wang
,
L.
,
2022
, “
Research on the Orientation Error of the Translational Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031003
.
17.
Duan
,
J.
,
Shao
,
Z.
,
Zhang
,
Z.
, and
Peng
,
F.
,
2022
, “
Performance Simulation and Energetic Analysis of TBot High-Speed Cable-Driven Parallel Robot
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
024504
.
18.
Bouchard
,
S.
,
Gosselin
,
C.
, and
Moore
,
B.
,
2010
, “
On the Ability of a Cable-Driven Robot to Generate a Prescribed Set of Wrenches
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011010
.
19.
Sun
,
Y.
,
Guo
,
Y.
,
Song
,
C.
, and
Lau
,
D.
,
2022
, “
Wrench-Feasible Workspace-Based Design of Hybrid Thruster and Cable Driven Parallel Robots
,”
Mech. Mach. Theory
,
172
, p.
104758
.
20.
Rasheed
,
T.
,
Long
,
P.
, and
Caro
,
S.
,
2020
, “
Wrench-Feasible Workspace of Mobile Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031009
.
21.
Erskine
,
J.
,
Chriette
,
A.
, and
Caro
,
S.
,
2019
, “
Wrench Analysis of Cable-Suspended Parallel Robots Actuated by Quadrotor Unmanned Aerial Vehicles
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020909
.
22.
Liu
,
S.
,
Mei
,
J.
,
Wang
,
P.
, and
Guo
,
F.
,
2023
, “
Optimal Design of a Coupling-Input Cable-Driven Parallel Robot With Passive Limbs Based on Force Space Analysis
,”
Mech. Mach. Theory
,
184
, p.
105296
.
23.
Eden
,
J.
,
Lau
,
D.
,
Tan
,
Y.
, and
Oetomo
,
D.
,
2016
, “
Available Acceleration Set for the Study of Motion Capabilities for Cable-Driven Robots
,”
Mech. Mach. Theory
,
105
, pp.
320
336
.
24.
Chan
,
A.
,
Lau
,
D.
, and
Lam
,
S.
,
2023
, “
Wrench and Twist Capability Analysis for Cable-Driven Parallel Robots With Consideration of the Actuator Torque-Speed Relationship
,”
IEEE Trans. Rob.
,
39
(
4
), pp.
3185
3199
.
25.
Hussein
,
H.
,
Santos
,
J. C.
,
Izard
,
J.-B.
, and
Gouttefarde
,
M.
,
2021
, “
Smallest Maximum Cable Tension Determination for Cable-Driven Parallel Robots
,”
IEEE Trans. Rob.
,
37
(
4
), pp.
1186
1205
.
26.
Duan
,
J. H.
,
Liu
,
H. Q.
,
Zhang
,
Z. K.
,
Shao
,
Z. F.
,
Meng
,
X. J.
, and
Lv
,
J. G.
, Reconfiguration and Performance Evaluation of TBot Cable-Driven Parallel Robot,”
Cable-Driven Parallel Robots (CableCon 2023). Mechanisms and Machine Science, Vol. 132
,
S.
Caro
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer
,
Cham
, pp.
283
294
.
27.
Duan
,
X.
,
Mi
,
J.
, and
Zhao
,
Z.
,
2016
, “
Vibration Isolation and Trajectory Following Control of a Cable Suspended Stewart Platform
,”
Machines
,
4
(
4
), pp.
18
20
.
28.
Althoff
,
M.
,
Stursberg
,
O.
, and
Buss
,
M.
,
2010
, “
Computing Reachable Sets of Hybrid Systems Using a Combination of Zonotopes and Polytopes
,”
Nonlinear Anal.: Hybrid Syst.
,
4
(
2
), pp.
233
249
.
You do not currently have access to this content.