Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The paper presents an approach to perform an instantaneous kinematic analysis of parallel–serial (hybrid) manipulators using screw theory. In this study, we focus on non-kinematically redundant manipulators that include a single parallel mechanism. The proposed systematic procedure allows deriving Jacobian matrices for such manipulators, which provide mathematical relations between the end-effector velocities and speeds in the actuated joints. A generalized structure of the obtained matrices also reflects the constrained motions of the end-effector and the parallel mechanism. To illustrate the developed techniques, we consider three examples where we analyze three well-known parallel–serial manipulators with six, five, and four degrees-of-freedom. Following the proposed method, we determine Jacobian matrices for each manipulator. Next, we apply the presented approach for velocity analysis of a novel parallel–serial manipulator with five degrees-of-freedom. Numerical simulations validate the proposed theoretical techniques. The suggested approach represents the basis for subsequent singularity and performance analysis, and it can be adapted to hybrid manipulators with other architectures.

References

1.
Ye
,
W.
,
Tang
,
T.
, and
Li
,
Q.
,
2023
, “
Robotized Manufacturing Equipment: A Review From the Perspective of Mechanism Topology
,”
Sci. China Technol. Sci.
,
66
(
6
), pp.
1683
1697
.
2.
Nouaille
,
L.
,
Laribi
,
M. A.
,
Nelson
,
C. A.
,
Zeghloul
,
S.
, and
Poisson
,
G.
,
2017
, “
Review of Kinematics for Minimally Invasive Surgery and Tele-Echography Robots
,”
ASME J. Med. Devices
,
11
(
4
), p.
040802
.
3.
Kumar
,
S.
,
Wöhrle
,
H.
,
de Gea Fernández
,
J.
,
Müller
,
A.
, and
Kirchner
,
F.
,
2020
, “
A Survey on Modularity and Distributivity in Series-Parallel Hybrid Robots
,”
Mechatronics
,
68
, p.
102367
.
4.
Müller
,
A.
,
Zlatanov
,
D.
, eds.,
2019
,
Singular Configurations of Mechanisms and Manipulators
,
Springer
,
Cham, Switzerland
.
5.
Li
,
Q.
,
Yang
,
C.
,
Xu
,
L.
, and
Ye
,
W.
,
2023
,
Performance Analysis and Optimization of Parallel Manipulators
,
Springer
,
Singapore
.
6.
Kelaiaia
,
R.
,
Chemori
,
A.
,
Brahmia
,
A.
,
Kerboua
,
A.
,
Zaatri
,
A.
, and
Company
,
O.
,
2023
, “
Optimal Dimensional Design of Parallel Manipulators With an Illustrative Case Study: A Review
,”
Mech. Mach. Theory
,
188
, p.
105390
.
7.
Pisla
,
D.
,
Szilaghyi
,
A.
,
Vaida
,
C.
, and
Plitea
,
N.
,
2013
, “
Kinematics and Workspace Modeling of a New Hybrid Robot Used in Minimally Invasive Surgery
,”
Robot. Comput. Integr. Manuf.
,
29
(
2
), pp.
463
474
.
8.
Deng
,
F.
,
Liu
,
X.
,
Zhang
,
N.
, and
Zhang
,
F.
,
2019
, “
Dimension Synthesis of a 3T2R Labelling Robot With Hybrid Mechanism
,”
J. Eur. des Systèmes Autom.
,
52
(
5
), pp.
509
514
.
9.
Wang
,
X.
,
Wu
,
J.
, and
Zhou
,
Y.
,
2023
, “
Dynamic Modeling and Performance Evaluation of a 5-DOF Hybrid Robot for Composite Material Machining
,”
Machines
,
11
(
6
), p.
652
.
10.
Yan
,
C.
,
Gao
,
F.
, and
Zhang
,
Y.
,
2010
, “
Kinematic Modeling of a Serial-Parallel Forging Manipulator With Application to Heavy-Duty Manipulations
,”
Mech. Based Des. Struct. Mach.
,
38
(
1
), pp.
105
129
.
11.
Singh
,
A.
,
Singla
,
E.
,
Soni
,
S.
, and
Singla
,
A.
,
2018
, “
Kinematic Modeling of a 7-Degree of Freedom Spatial Hybrid Manipulator for Medical Surgery
,”
Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
,
232
(
1
), pp.
12
23
.
12.
Wang
,
Z.
,
Li
,
Y.
,
Sun
,
P.
,
Luo
,
Y.
,
Chen
,
B.
, and
Zhu
,
W.
,
2021
, “
A Multi-objective Approach for the Trajectory Planning of a 7-DOF Serial-Parallel Hybrid Humanoid Arm
,”
Mech. Mach. Theory
,
165
, p.
104423
.
13.
Carmichael
,
M. G.
,
Liu
,
D.
, and
Waldron
,
K. J.
,
2017
, “
A Framework for Singularity-Robust Manipulator Control During Physical Human-Robot Interaction
,”
Int. J. Rob. Res.
,
36
(
5–7
), pp.
861
876
.
14.
Sklar
,
M.
, and
Tesar
,
D.
,
1988
, “
Dynamic Analysis of Hybrid Serial Manipulator Systems Containing Parallel Modules
,”
ASME J. Mech. Transm. Autom. Des.
,
110
(
2
), pp.
109
115
.
15.
Chung
,
G. B.
,
Yi
,
B. -J.
,
Lim
,
D. J.
, and
Kim
,
W.
,
2004
, “
An Efficient Dynamic Modeling Methodology for General Type of Hybrid Robotic Systems
,”
Proceedings of International Conference on Robotics and Automation (ICRA)
, New Orleans, LA, Apr. 26–May 1, Vol.
2
, pp.
1795
1802
.
16.
Chablat
,
D.
,
Wenger
,
P.
, and
Angeles
,
J.
,
1998
, “
The Isoconditioning Loci of a Class of Closed-Chain Manipulators
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Leuven, Belgium, May 16–20, Vol.
3
, pp.
1970
1975
.
17.
Wang
,
H. B.
,
Ishimatsu
,
T.
,
Schaerer
,
C.
, and
Huang
,
Z.
,
1998
, “
Kinematics of a Five Degree-of-Freedom Prosthetic Arm
,”
Mech. Mach. Theory
,
33
(
7
), pp.
895
908
.
18.
Guo
,
W.
,
Li
,
R.
,
Cao
,
C.
,
Tong
,
X.
, and
Gao
,
Y.
,
2016
, “
A New Methodology for Solving Trajectory Planning and Dynamic Load-Carrying Capacity of a Robot Manipulator
,”
Math. Probl. Eng.
,
2016
, p.
1302537
.
19.
Waldron
,
K. J.
,
Raghavan
,
M.
, and
Roth
,
B.
,
1989
, “
Kinematics of a Hybrid Series-Parallel Manipulation System
,”
ASME J. Dyn. Syst. Meas. Control
,
111
(
2
), pp.
211
221
.
20.
Yang
,
G.
,
Chen
,
I.-M.
,
Yeo
,
S. H.
, and
Lin
,
W.
,
2008
, “Design and Analysis of a Modular Hybrid Parallel-Serial Manipulator for Robotised Deburring Applications,”
Smart Devices and Machines for Advanced Manufacturing
,
L.
Wang
,
J.
Xi
, eds.,
Springer
,
London
, pp.
167
188
.
21.
He
,
J.
,
Gao
,
F.
, and
Sun
,
Q.
,
2019
, “
Design and Kinematic Analysis of a Novel Hybrid Kinematic Mechanism With Seven-Degrees-of-Freedom and Variable Topology for Operation in Space
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011003
.
22.
Xiao
,
J.
,
Wang
,
Y.
,
Liu
,
S.
,
Sun
,
Y.
,
Liu
,
H.
,
Huang
,
T.
, and
Xu
,
J.
,
2021
, “
Grinding Trajectory Generation of Hybrid Robot Based on Cartesian Direct Teaching Technology
,”
Ind. Rob.
,
48
(
3
), pp.
341
351
.
23.
Zhang
,
X.
,
Wang
,
H.
,
Rong
,
Y.
,
Niu
,
J.
,
Tian
,
J.
, and
Li
,
S.
,
2023
, “
Dynamic Modeling of a Class of Parallel-Serial Mechanisms by the Principle of Virtual Work
,”
Meccanica
,
58
(
1
), pp.
303
316
.
24.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
,
Oxford, UK
.
25.
Crane
, III,
C. D.
,
Griffis
,
M.
, and
Duffy
,
J.
,
2022
,
Screw Theory and Its Application to Spatial Robot Manipulators
,
Cambridge University Press
,
Cambridge, UK
.
26.
Yang
,
S.
, and
Li
,
Y.
,
2020
, “
Classification and Analysis of Constraint Singularities for Parallel Mechanisms Using Differential Manifolds
,”
Appl. Math. Model.
,
77
(
1
), pp.
469
477
.
27.
Whitney
,
D. E.
,
1972
, “
The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
94
(
4
), pp.
303
309
.
28.
Mohamed
,
M. G.
, and
Duffy
,
J.
,
1985
, “
A Direct Determination of the Instantaneous Kinematics of Fully Parallel Robot Manipulators
,”
ASME J. Mech. Transm. Autom. Des.
,
107
(
2
), pp.
226
229
.
29.
Kumar
,
V.
,
1992
, “
Instantaneous Kinematics of Parallel-Chain Robotic Mechanisms
,”
ASME J. Mech. Des.
,
114
(
3
), pp.
349
358
.
30.
Wang
,
K.
,
Dong
,
H.
,
Spyrakos-Papastavridis
,
E.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2022
, “
A Repelling-Screw-Based Approach for the Construction of Generalized Jacobian Matrices for Nonredundant Parallel Manipulators
,”
Mech. Mach. Theory
,
176
, p.
105009
.
31.
Joshi
,
S. A.
, and
Tsai
,
L. -W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.
32.
Huang
,
T.
,
Liu
,
H. T.
, and
Chetwynd
,
D. G.
,
2011
, “
Generalized Jacobian Analysis of Lower Mobility Manipulators
,”
Mech. Mach. Theory
,
46
(
6
), pp.
831
844
.
33.
Huang
,
T.
,
Yang
,
S.
,
Wang
,
M.
,
Sun
,
T.
, and
Chetwynd
,
D. G.
,
2015
, “
An Approach to Determining the Unknown Twist/Wrench Subspaces of Lower Mobility Serial Kinematic Chains
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031003
.
34.
Etemadi-Zanganeh
,
K.
, and
Angeles
,
J.
,
1995
, “
Instantaneous Kinematics of General Hybrid Parallel Manipulators
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
581
588
.
35.
Monsarrat
,
B.
, and
Gosselin
,
C. M.
,
2002
, “
Jacobian Matrix of General Parallel and Hybrid Mechanisms With Rigid and Flexible Links: A Software-Oriented Approach
,”
Proceedings of ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Montreal, Quebec, Canada, Sept. 29–Oct. 2, Vol.
5
, pp.
461
470
.
36.
Sun
,
P.
,
Li
,
Y.
,
Chen
,
K.
,
Zhu
,
W.
,
Zhong
,
Q.
, and
Chen
,
B.
,
2021
, “
Generalized Kinematics Analysis of Hybrid Mechanisms Based on Screw Theory and Lie Groups Lie Algebras
,”
Chin. J. Mech. Eng.
,
34
(
1
), p.
98
.
37.
Lee
,
S.
, and
Kim
,
S.
,
1993
, “
Efficient Inverse Kinematics for Serial Connections of Serial and Parallel Manipulators
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Yokohama, Japan, July 26–30, Vol.
3
, pp.
1635
1641
.
38.
Huang
,
M. Z.
,
Ling
,
S. -H.
, and
Sheng
,
Y.
,
1993
, “
A Study of Velocity Kinematics for Hybrid Manipulators With Parallel-Series Configurations
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
, Atlanta, GA, May 2–6, Vol.
1
, pp.
456
461
.
39.
Lee
,
M. K.
,
Park
,
K. W.
, and
Choi
,
B. O.
,
1999
, “
Kinematic and Dynamic Models of Hybrid Robot Manipulator for Propeller Grinding
,”
J. Robot. Syst.
,
16
(
3
), pp.
137
150
.
40.
Gallardo-Alvarado
,
J.
,
2023
, “
Unified Infinitesimal Kinematics of a 3-RRR/PRR Six-Degree-of-Freedom Parallel-Serial Manipulator
,”
Meccanica
,
58
(
4
), pp.
795
811
.
41.
Wu
,
Y.
, and
Carricato
,
M.
,
2018
, “Design of a Novel 3-DOF Serial-Parallel Robotic Wrist: A Symmetric Space Approach,”
Robotics Research
,
A.
Bicchi
,
W.
Burgard
, eds.,
Springer
,
Cham, Switzerland
, pp.
389
404
.
42.
Hu
,
B.
,
Shi
,
Y.
,
Xu
,
L.
, and
Bai
,
P.
,
2020
, “
Reconsideration of Terminal Constraint/Mobility and Kinematics of 5-DOF Hybrid Manipulators Formed by One 2R1T PM and One RR SM
,”
Mech. Mach. Theory
,
149
, p.
103837
.
43.
Laryushkin
,
P.
,
Antonov
,
A.
,
Fomin
,
A.
, and
Essomba
,
T.
,
2022
, “
Velocity and Singularity Analysis of a 5-DOF (3T2R) Parallel-Serial (Hybrid) Manipulator
,”
Machines
,
10
(
4
), p.
276
.
44.
Antonov
,
A.
, and
Fomin
,
A.
,
2023
, “Velocity Analysis of a 5-DOF Hybrid Manipulator,”
New Advances in Mechanisms, Transmissions and Applications
,
M. A.
Laribi
,
C. A.
Nelson
,
M.
Ceccarelli
, and
S.
Zeghloul
, eds.,
Springer
,
Cham, Switzerland
, pp.
161
170
.
45.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
.
46.
Huang
,
Z.
,
Liu
,
J.
, and
Zeng
,
D.
,
2009
, “
A General Methodology for Mobility Analysis of Mechanisms Based on Constraint Screw Theory
,”
Sci. China Ser. E Technol. Sci.
,
52
(
5
), pp.
1337
1347
.
47.
Song
,
Y.
,
Kang
,
X.
, and
Dai
,
J. S.
,
2020
, “
Instantaneous Mobility Analysis Using the Twist Space Intersection Approach for Parallel Mechanisms
,”
Mech. Mach. Theory
,
151
, p.
103866
.
48.
Zhao
,
J.
,
Li
,
B.
,
Yang
,
X.
, and
Yu
,
H.
,
2009
, “
Geometrical Method to Determine the Reciprocal Screws and Applications to Parallel Manipulators
,”
Robotica
,
27
(
6
), pp.
929
940
.
49.
Yang
,
G.
,
Chen
,
W.
, and
Ho
,
E. H. L.
,
2002
, “
Design and Kinematic Analysis of a Modular Hybrid Parallel-Serial Manipulator
,”
Proceedings of International Conference on Control, Automation, Robotics and Vision (ICARCV)
, Singapore, Dec. 2–5, Vol.
1
, pp.
45
50
.
50.
Carricato
,
M.
, and
Zlatanov
,
D.
,
2014
, “
Persistent Screw Systems
,”
Mech. Mach. Theory
,
73
, pp.
296
313
.
51.
Dong
,
C.
,
Liu
,
H.
,
Liu
,
Q.
,
Sun
,
T.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2018
, “An Approach for Type Synthesis of Overconstrained 1T2R Parallel Mechanisms,”
Computational Kinematics
,
S.
Zeghloul
,
L.
Romdhane
, and
M.
Laribi
, eds.,
Springer
,
Cham, Switzerland
, pp.
274
281
.
52.
Liu
,
Q.
,
Liu
,
H.
,
Xiao
,
J.
,
Tian
,
W.
,
Ma
,
Y.
, and
Li
,
B.
,
2023
, “
Open-Architecture of CNC System and Mirror Milling Technology for a 5-Axis Hybrid Robot
,”
Robot. Comput. Integr. Manuf.
,
81
, p.
102504
.
53.
Saafi
,
H.
,
Laribi
,
M. A.
,
Zeghloul
,
S.
, and
Arsicault
,
M.
,
2018
, “
On the Development of a New Master Device Used for Medical Tasks
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
044501
.
54.
Saafi
,
H.
,
Laribi
,
M. A.
, and
Zeghloul
,
S.
,
2020
, “
Forward Kinematic Model Resolution of a Special Spherical Parallel Manipulator: Comparison and Real-Time Validation
,”
Robotics
,
9
(
3
), p.
62
.
55.
Antonov
,
A.
, and
Fomin
,
A.
,
2023
, “Mechanism Design and Inverse Kinematics of a 5-DOF Medical Assistive Manipulator,”
New Trends in Medical and Service Robotics
,
D.
Tarnita
,
N.
Dumitru
,
D.
Pisla
,
G.
Carbone
, and
I.
Geonea
, eds.,
Springer
,
Cham, Switzerland
, pp.
334
342
.
56.
Bottema
,
O.
, and
Roth
,
B.
,
1990
,
Theoretical Kinematics
,
Dover Publications
,
New York
. https://scholar.google.com/scholar?cluster=7729442652911673935
57.
Gallardo-Alvarado
,
J.
,
2005
, “
Kinematics of a Hybrid Manipulator by Means of Screw Theory
,”
Multibody Syst. Dyn.
,
14
(
3–4
), pp.
345
366
.
58.
Gallardo-Alvarado
,
J.
, and
Posadas-García
,
J.
,
2013
, “
Mobility Analysis and Kinematics of the Semi-General 2(3-RPS) Series-Parallel Manipulator
,”
Robot. Comput. Integr. Manuf.
,
29
(
6
), pp.
463
472
.
59.
Nayak
,
A.
,
Caro
,
S.
, and
Wenger
,
P.
,
2019
, “
Kinematic Analysis of the 3-RPS-3-SPR Series-Parallel Manipulator
,”
Robotica
,
37
(
7
), pp.
1240
1266
.
60.
Zoppi
,
M.
,
Zlatanov
,
D.
, and
Molfino
,
R.
,
2006
, “
On the Velocity Analysis of Interconnected Chains Mechanisms
,”
Mech. Mach. Theory
,
41
(
11
), pp.
1346
1358
.
61.
Ding
,
H.
,
Cao
,
W.
,
Chen
,
Z.
, and
Kecskeméthy
,
A.
,
2015
, “
Structural Synthesis of Two-Layer and Two-Loop Spatial Mechanisms With Coupling Chains
,”
Mech. Mach. Theory
,
92
, pp.
289
313
.
You do not currently have access to this content.