Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The measurement step of the existing calibration approaches for robotic manipulators can take a considerable amount of time to settle a robotic manipulator down at certain static configurations, making the calibration approaches time-consuming. For applications of robotic manipulators requiring periodic recalibration (e.g., human–robot collaborative production lines and robotic inspecting systems), the time consumption of the data collection phase is a critical issue. This paper proposes a fast kinematic calibration approach for robotic manipulators, based on the measurement of a robotic manipulator tracking only a smooth and continuous time-optimal trajectory, rather than static measurement. Data samples on configurations are recorded continuously without settling the robotic manipulator down. To demonstrate and evaluate the proposed approach, experiments are performed based on a four degrees-of-freedom parallel manipulator. Experiment results show that compared to an existing calibration approach based on static measurement, the proposed approach improves the time efficiency of calibration by 93.13% with only a position accuracy loss of 1.77% and an orientation accuracy loss of 2.36%.

References

1.
Simas
,
H.
, and
Gregorio
,
R. D.
,
2016
, “
Geometric Error Effects on Manipulators’ Positioning Precision: A General Analysis and Evaluation Method
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061016
.
2.
Mooring
,
B. W.
,
Roth
,
Z. S.
, and
Driels
,
M. R.
,
1991
,
Fundamentals of Manipulator Calibration
,
Wiley-Interscience
,
Hoboken, NJ
.
3.
Qi
,
J.
,
Chen
,
B.
, and
Zhang
,
D.
,
2021
, “
A Calibration Method for Enhancing Robot Accuracy Through Integration of Kinematic Model and Spatial Interpolation Algorithm
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061013
.
4.
Majarena
,
A. C.
,
Santolaria
,
J.
,
Samper
,
D.
, and
Aguilar
,
J. J.
,
2010
, “
An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms
,”
Sensors
,
10
(
11
), pp.
10256
10297
.
5.
Zhuang
,
H. Q.
, and
Roth
,
Z. S.
,
1996
,
Camera-Aided Robot Calibration
,
CRC Press
,
Boca Raton, FL
.
6.
Du
,
G. L.
,
Liang
,
Y. H.
,
Li
,
C. Q.
, and
Liu
,
P. X.
,
2020
, “
Online Robot Kinematic Calibration Using Hybrid Filter With Multiple Sensors
,”
IEEE Trans. Instrum Meas
,
69
(
9
), pp.
7092
7107
.
7.
Du
,
G. L.
, and
Zhang
,
P.
,
2014
, “
Online Serial Manipulator Calibration Based on Multisensory Process Via Extended Kalman and Particle Filters
,”
IEEE Trans. Ind. Electron.
,
61
(
12
), pp.
6852
6859
.
8.
Yu
,
C. Y.
, and
Xi
,
J. T.
,
2018
, “
Simultaneous and On-Line Calibration of a Robot-Based Inspecting System
,”
Rob Comput-Integr Manuf.
,
49
, pp.
349
360
.
9.
Yang
,
S.
,
Choset
,
H.
, and
Manchester
,
Z.
,
2022
, “
Online Kinematic Calibration for Legged Robots
,”
IEEE Rob Autom Lett
,
7
(
3
), pp.
8178
8185
.
10.
Gasparetto
,
A.
,
Boscariol
,
P.
,
Lanzutti
,
A.
, and
Vidoni
,
R.
,
2015
,
Path Planning and Trajectory Planning Algorithms: A General Overview
,
Springer International Publishing
,
Berlin, Germany
.
11.
Lyu
,
E. L.
,
Liu
,
T. T.
,
Wang
,
J. L.
,
Song
,
S.
,
Qi
,
J.
, and
Meng
,
Q. H.
,
2023
, “
Motion Planning of Manipulator by Points-Guided Sampling Network
,”
IEEE Trans. Autom. Sci. Eng.
,
20
(
2
), pp.
821
831
.
12.
Mitchell
,
T. J.
,
1974
, “
An Algorithm for the Construction of D-Optimal Experimental Designs
,”
Technometrics
,
16
(
2
), pp.
203
210
.
13.
Borm
,
J. H.
, and
Menq
,
C. H.
,
1991
, “
Determination of Optimal Measurement Configurations for Robot Calibration Based on Observibility Measure
,”
Int. J. Rob. Res.
,
10
(
1
), pp.
51
63
.
14.
Menq
,
C. H.
,
Borm
,
J. H.
, and
Lai
,
J. Z.
,
1989
, “
Identification and Observability Measure of a Basis Set of Error Parameters in Robot Calibration
,”
ASME J. Mech. Des.
,
111
(
4
), pp.
513
518
.
15.
Wang
,
H. B.
,
Gao
,
T. Q.
,
Kinugawa
,
J.
, and
Kosuge
,
K.
,
2017
, “
Finding Measurement Configurations for Accurate Robot Calibration: Validation With a Cable-Driven Robot
,”
IEEE Trans. Rob.
,
33
(
5
), pp.
1156
1169
.
16.
Daney
,
D.
,
Papegay
,
Y.
, and
Madeline
,
B.
,
2005
, “
Choosing Measurement Poses for Robot Calibration With the Local Convergence Method and Tabu Search
,”
Int. J. Rob. Res.
,
24
(
6
), pp.
501
518
.
17.
Sun
,
Y.
, and
Hollerbach
,
J. M.
,
2008
, “
Observability Index Selection for Robot Calibration
,”
IEEE Int. Conf. Rob. Autom.
,
1
(
5
), pp.
831
836
.
18.
Abu-Dakka
,
F. J.
,
Assad
,
I. F.
,
Alkhdour
,
R. M.
, and
Abderahim
,
M.
,
2017
, “
Statistical Evaluation of an Evolutionary Algorithm for Minimum Time Trajectory Planning Problem for Industrial Robots
,”
Int. J. Adv. Manuf. Technol.
,
89
, pp.
389
406
.
19.
Brady
,
M.
,
Hollerbach
,
J. M.
,
Johnson
,
T. L.
,
Lozano-Perez
,
T.
, and
Mason
,
M. T.
,
1983
,
Robot Motion: Planning and Control
(
Automata and Manipulators (Mechanism)
),
MIT Press
,
Cambridge, MA
.
20.
Eskandary
,
P. K.
,
Belzile
,
B.
, and
Angeles
,
J.
,
2019
, “
Trajectory-Planning and Normalized-Variable Control for Parallel Pick-and-Place Robots
,”
ASME, J. Mech. Rob.
,
11
(
3
), p.
031001
.
21.
Zhang
,
T.
,
Zhang
,
M.
, and
Zou
,
Y. B.
,
2021
, “
Time-Optimal and Smooth Trajectory Planning for Robot Manipulators
,”
Int. J. Control. Autom. Syst.
,
19
, pp.
521
531
.
22.
Castain
,
R. H.
, and
Paul
,
R. P.
,
1984
, “
An On-Line Dynamic Trajectory Generator
,”
Int. J. Rob. Res.
,
3
(
1
), pp.
68
72
.
23.
Nguyen
,
K. D.
,
Ng
,
T. C.
, and
Chen
,
I. M.
,
2008
, “
On Algorithms for Planning S-Curve Motion Profiles
,”
Int. J. Adv. Rob. Syst.
,
5
(
1
), pp.
99
106
.
24.
Chatterjee
,
S.
,
Carrera
,
C.
, and
Lynch
,
L. A.
,
1996
, “
Genetic Algorithms and Traveling Salesman Problems
,”
Eur. J. Oper. Res.
,
93
(
3
), pp.
490
50
.
25.
Yang
,
X. S.
,
Zhao
,
Z. L.
,
Xiong
,
H.
,
Li
,
Q. C.
, and
Lou
,
Y. J.
,
2021
, “
Kinematic Analysis and Optimal Design of a Novel Schonflies-Motion Parallel Manipulator With Rotational Pitch Motion for Assembly Operations
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040910
.
26.
Klimchik
,
A.
,
Furet
,
B.
,
Caro
,
S.
, and
Pashkevich
,
A.
,
2015
, “
Identification of the Manipulator Stiffness Model Parameters in Industrial Environment
,”
Mech. Mach. Theory
,
90
, pp.
1
22
.
27.
Jian
,
S.
,
Xiong
,
H.
,
Yang
,
X. S.
, and
Lou
,
Y. J.
,
2023
, “
Enhancing Kinematic Calibration Accuracy for Parallel Manipulators Based on Truncated Total Least-Square Regularization
,”
ASME J. Mech. Rob.
,
16
(
5
), p.
051013
.
28.
Yang
,
X. S.
,
Xiong
,
X. G.
,
Zou
,
Z. Y.
,
Lou
,
Y. J.
,
Kamal
,
S.
, and
Li
,
J. G.
,
2022
, “
Discrete-Time Multivariable Super-Twisting Algorithm With Semi-Implicit Euler Method
,”
IEEE Trans. Circ. Syst. II: Expr. Briefs
,
69
(
11
), pp.
4443
4447
. http:dx.doi.org10.1109/TCSII.2022.3182772
29.
Yang
,
X. S.
,
Xiong
,
X. G.
,
Zou
,
Z. Y.
, and
Lou
,
Y. J.
,
2023
, “
Semi-Implicit Euler Digital Implementation of Conditioned Super-Twisting Algorithm With Actuation Saturation
,”
IEEE Trans. Ind. Electron.
,
70
(
8
), pp.
8388
8397
.
30.
Omodei
,
A.
,
Legnani
,
G.
, and
Adamini
,
R.
,
2000
, “
Three Methodologies for the Calibration of Industrial Manipulators: Experimental Results on a Scara Robot
,”
J. Rob. Syst.
,
17
(
6
), pp.
291
307
.
31.
Jiang
,
Z. H.
,
Zhou
,
W. G.
,
Li
,
H.
,
Mo
,
Y.
,
Ni
,
W. C.
, and
Huang
,
Q.
,
2017
, “
A New Kind of Accurate Calibration Method for Robotic Kinematic Parameters Based on the Extended Kalman and Particle Filter Algorithm
,”
IEEE Trans. Ind. Electron.
,
65
(
4
), pp.
3337
3345
.
32.
Chen
,
G. L.
,
Wang
,
H.
, and
Lin
,
Z. Q.
,
2014
, “
Determination of the Identifiable Parameters in Robot Calibration Based on the Poe Formula
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1066
1077
.
33.
Luo
,
X.
,
Xie
,
F. G.
,
Liu
,
X. J.
, and
Xie
,
Z. H.
,
2021
, “
Kinematic Calibration of a 5-Axis Parallel Machining Robot Based on Dimensionless Error Mapping Matrix
,”
Rob. Comput.-Integr. Manuf.
,
70
, pp.
102
115
.
You do not currently have access to this content.