Abstract

Auxetic materials, a type of mechanical metamaterial with negative Poisson's ratio, are potentially utilized in the realms of energy absorption and engineering structures. However, most of the existing auxetic materials either contain a large amount of rotational motion or still have gaps when fully folded, which is not conducive to lifting loads. Besides, their application is limited to flexible environments due to their single-folding mode. To overcome such limitations, a fully foldable mechanical metamaterial with isotropic auxeticity is proposed by utilizing the Sarrus mechanism, and a derivative multi-mode folding form is obtained in this paper. Then, the degrees-of-freedom (DOF), bistability, and kinematic characterizations are analyzed to show the performance of the proposed structures. Finally, the parameters of the proposed fully foldable mechanical metamaterials are discussed to simplify the structures. Some prototypes are fabricated to validate the effectiveness and performance of the proposed mechanical metamaterials. The proposed mechanical metamaterials have some merits, such as isotropic auxeticity, being fully folded to achieve dense compression, being bistable with load-bearing capacity, multi-mode folding form, and single-DOF, and they have versatile potential applications in complex environments requiring large deformation and flexible adaptation.

References

1.
Patiballa
,
S. K.
, and
Krishnan
,
G.
,
2018
, “
Qualitative Analysis and Conceptual Design of Planar Metamaterials With Negative Poisson's Ratio
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021006
.
2.
Pratapa
,
P. P.
,
Liu
,
K.
,
Vasudevan
,
S. P.
, and
Paulino
,
G. H.
,
2021
, “
Reprogrammable Kinematic Branches in Tessellated Origami Structures
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031004
.
3.
Wang
,
Q. M.
,
Jackson
,
J. A.
,
Ge
,
Q.
,
Hopkins
,
J. B.
,
Spadaccini
,
C. M.
, and
Fang
,
N. X.
,
2016
, “
Lightweight Mechanical Metamaterials With Tunable Negative Thermal Expansion
,”
Phys. Rev. Lett.
,
117
(
17
), p.
175901
.
4.
He
,
X. B.
,
Yu
,
J. J.
, and
Xie
,
Y.
,
2019
, “
Bi-Material Re-Entrant Triangle Cellular Structures Incorporating Tailorable Thermal Expansion and Tunable Poisson's Ratio
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
061003
.
5.
Chen
,
B. C.
,
Chen
,
L. M.
,
Du
,
B.
,
Liu
,
H. C.
,
Li
,
W. G.
, and
Fang
,
D. N.
,
2021
, “
Novel Multifunctional Negative Stiffness Mechanical Metamaterial Structure: Tailored Functions of Multi-Stable and Compressive Mono-Stable
,”
Composites, Part B
,
204
, p.
108501
.
6.
Chen
,
S.
,
Tan
,
X. J.
,
Hu
,
J. Q.
,
Wang
,
B.
,
Wang
,
L. C.
,
Zou
,
Y. J.
, and
Wu
,
L. Z.
,
2022
, “
Continuous Carbon Fiber Reinforced Composite Negative Stiffness Mechanical Metamaterial for Recoverable Energy Absorption
,”
Compos. Struct.
,
288
, p.
115411
.
7.
Chen
,
X. Y.
,
Ji
,
Q. X.
,
Wei
,
J. Z.
,
Tan
,
H. F.
,
Yu
,
J. X.
,
Zhang
,
P. F.
,
Laude
,
V.
, and
Kadic
,
M.
,
2020
, “
Light-Weight Shell-Lattice Metamaterials for Mechanical Shock Absorption
,”
Int. J. Mech. Sci.
,
169
, p.
105288
.
8.
Zhang
,
Z.
,
Zhang
,
L.
,
Song
,
B.
,
Yao
,
Y. G.
, and
Shi
,
Y. S.
,
2022
, “
Bamboo-Inspired, Simulation-Guided Design and 3D Printing of Light-Weight and High-Strength Mechanical Metamaterials
,”
Appl. Mater. Today
,
26
, p.
101268
.
9.
Shan
,
S. C.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L. C.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
.
10.
Fan
,
H. G.
,
Tian
,
Y. C.
,
Yang
,
L. J.
,
Hu
,
D. P.
, and
Liu
,
P. Q.
,
2022
, “
Multistable Mechanical Metamaterials With Highly Tunable Strength and Energy Absorption Performance
,”
Mech. Adv. Mater. Struct
,
29
(
11
), pp.
1637
1649
.
11.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson's Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
12.
Evans
,
K. E.
,
1989
, “
Tensile Network Microstructures Exhibiting Negative Poisson’s Ratio
,”
J. Phys. D: Appl. Phys.
,
22
(
12
), pp.
1870
1876
.
13.
Scarpa
,
F.
, and
Tomlin
,
P. J.
,
2000
, “
On the Transverse Shear Modulus of Negative Poisson's Ratio Honeycomb Structures
,”
Fatigue Fract. Eng. Mater. Struct.
,
23
(
8
), pp.
717
720
.
14.
Alderson
,
K. L.
,
Pickles
,
A. P.
,
Neale
,
P. J.
, and
Evans
,
K. E.
,
1994
, “
Auxetic Polyethylene—The Effect of a Negative Poisson Ratio on Hardness
,”
Acta Metall. Mater.
,
42
(
7
), pp.
2261
2266
.
15.
Choi
,
J. B.
, and
Lakes
,
R. S.
,
1996
, “
Fracture Toughness of Re-Entrant Foam Materials With a Negative Poisson's Ratio: Experiment and Analysis
,”
Int. J. Fract.
,
80
(
1
), pp.
73
83
.
16.
Donoghue
,
J. P.
,
Alderson
,
K. L.
, and
Evans
,
K. E.
,
2009
, “
The Fracture Toughness of Composite Laminates With a Negative Poisson's Ratio
,”
Phys. Stat. Solidi B
,
246
(
9
), pp.
2011
2017
.
17.
Krödel
,
S.
,
Delpero
,
T.
,
Bergamini
,
A.
,
Ermanni
,
P.
, and
Kochmann
,
D. M.
,
2014
, “
3D Auxetic Microlattices With Independently Controllable Acoustic Band Gaps and Quasi-Static Elastic Moduli
,”
Adv. Eng. Mater.
,
16
(
4
), pp.
357
363
.
18.
Patil
,
G. U.
,
Shedge
,
A. B.
, and
Matlack
,
K. H.
,
2019
, “
3D Auxetic Lattice Materials for Anomalous Elastic Wave Polarization
,”
Appl. Phys. Lett.
,
115
(
9
), p.
091902
.
19.
Xue
,
Y. Y.
,
Gao
,
P. X.
,
Zhou
,
L.
, and
Han
,
F. S.
,
2020
, “
An Enhanced Three-Dimensional Auxetic Lattice Structure With Improved Property
,”
Materials
,
13
(
4
), p.
1008
.
20.
Yang
,
L.
,
Harrysson
,
O.
,
West
,
H.
, and
Cormier
,
D.
,
2015
, “
Mechanical Properties of 3D Re-Entrant Honeycomb Auxetic Structures Realized Via Additive Manufacturing
,”
Int. J. Solids Struct.
,
69–70
, pp.
475
490
.
21.
Qi
,
D. X.
,
Yu
,
H. B.
,
Hu
,
W. X.
,
He
,
C. W.
,
Wu
,
W. W.
, and
Ma
,
Y. B.
,
2019
, “
Bandgap and Wave Attenuation Mechanisms of Innovative Reentrant and Anti-Chiral Hybrid Auxetic Metastructure
,”
Extreme Mech. Lett.
,
28
, pp.
58
68
.
22.
Jiao
,
C. X.
, and
Yan
,
G.
,
2021
, “
Design and Elastic Mechanical Response of a Novel 3D-Printed Hexa-Chiral Helical Structure With Negative Poisson's Ratio
,”
Mater. Des.
,
212
, p.
110219
.
23.
Gibson
,
L. J.
,
Ashby
,
M. F.
, and
Schajer
,
G. S.
,
1982
, “
The Mechanics of Two-Dimensional Cellular Materials
,”
Proc. R. Soc. Lond. A Math. Phys. Sci
,
382
(
1782
), pp.
25
42
.
24.
Lakes
,
R.
,
1991
, “
Deformation Mechanisms in Negative Poisson Ratio Materials—Structural Aspects
,”
J. Mater. Sci.
,
26
(
9
), pp.
2287
2292
.
25.
Kim
,
J.
,
Shin
,
D.
,
Yoo
,
D. S.
, and
Kim
,
K.
,
2017
, “
Regularly Configured Structures With Polygonal Prisms for Three-Dimensional Auxetic Behaviour
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
473
(
2202
), pp.
1
15
.
26.
Grima
,
J. N.
, and
Evans
,
K. E.
,
2000
, “
Auxetic Behavior From Rotating Squares
,”
J. Mater. Sci. Lett.
,
19
(
17
), pp.
1563
1565
.
27.
Grima
,
J. N.
,
Alderson
,
A.
, and
Evans
,
K. E.
,
2005
, “
Auxetic Behaviour From, Rotating Rigid Units
,”
Phys. Stat. Solidi B
,
242
(
3
), pp.
561
575
.
28.
Grima
,
J. N.
, and
Evans
,
K. E.
,
2006
, “
Auxetic Behavior From Rotating Triangles
,”
J. Mater. Sci.
,
41
(
10
), pp.
3193
3196
.
29.
Yang
,
Y. F.
, and
You
,
Z.
,
2018
, “
Geometry of Transformable Metamaterials Inspired by Modular Origami
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021001
.
30.
Plewa
,
J.
,
Plonska
,
M.
, and
Lis
,
P.
,
2022
, “
Investigation of Modified Auxetic Structures From Rigid Rotating Squares
,”
Materials
,
15
(
8
), p.
2848
.
31.
Attard
,
D.
, and
Grima
,
J. N.
,
2012
, “
A Three-Dimensional Rotating Rigid Units Network Exhibiting Negative Poisson's Ratios
,”
Phys. Stat. Solidi B
,
249
(
7
), pp.
1330
1338
.
32.
Tang
,
Y. Y.
,
Liu
,
J. G.
,
Wu
,
C. C.
, and
Zhao
,
P. Y.
,
2024
, “
Configuration Design and Crease Topology of Origami-Inspired Spinning Space Deployable Structures
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
238
(
12
), pp.
5621
5637
.
33.
Sarrus
,
P. F.
,
1853
, “
Note Sur la transformation des mouvements rectilignes alternatifs, en mouvements circulaires, et reciproquement
,”
Acad. Sci.
,
36
, pp.
1036
1038
.
34.
Yang
,
Y.
,
2020
, “
Modular Origami-Inspired Kinematic Metamaterials
,”
Doctor of Philosophy Dissertation
,
University of Oxford
,
London, UK
.
35.
Yang
,
Y. F.
,
Zhang
,
X.
,
Maiolino
,
P.
,
Chen
,
Y.
, and
You
,
Z.
,
2023
, “
Linkage-Based Three-Dimensional Kinematic Metamaterials With Programmable Constant Poisson's Ratio
,”
Mater. Des.
,
233
, p.
112249
.
36.
Ma
,
J. Y.
,
Jiang
,
X. Y.
, and
Chen
,
Y.
,
2022
, “
A 3D Modular Meta-Structure With Continuous Mechanism Motion and Bistability
,”
Extreme Mech. Lett.
,
51
, p.
101584
.
37.
Denavit
,
J.
, and
Hartenberg R
,
S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
38.
Wohlhart
,
K.
,
2004
, “
Screw Spaces and Connectivities in Multiloop Linkages
,”
Proceedings of 9th International Symposium on Advances in Robot Kinematics
,
Sestri Levante, Italy
,
June 18–21
, Springer, Dordrecht, The Netherlands, pp.
97
104
.
You do not currently have access to this content.