Abstract

The inverse design of soft actuators refers to a design methodology that derives the actuator's geometric and material parameters based on the desired target shape. This approach offers an efficient solution for developing soft actuators with complex geometries, enabling the precise matching of intricate deformation targets. Furthermore, it facilitates personalized customization and design optimization for complex application scenarios. In this article, we present a novel inverse design method for three-dimensional (3D) variable curvature pneumatic soft actuators and incorporate buckling deformation to improve shape matching. By analyzing variable cross-sectional actuators, we demonstrate that cross-sectional curvature is determined solely by its shape, enabling specific curvatures to be achieved by adjusting the cross-sectional geometry. To process input 3D point coordinates and calculate curve curvatures, we introduce cubic spline interpolation and the three-point circle method. Additionally, a minimum discretization method is proposed to identify the helical axis for helical curves. Finally, based on the actuator's deformation model, we develop an inverse design program to achieve the desired actuator shape. Finite element simulations and experimental validation confirm the effectiveness of this approach, demonstrating that the fabricated actuators can precisely match complex 3D variable curvature shapes. The proposed approach has broad potential applications in situations that require specific, repetitive use, such as specific object grasping and customized medical rehabilitation devices.

References

1.
Daerden
,
F.
, and
Lefeber
,
D.
,
2002
, “
Pneumatic Artificial Muscles: Actuators for Robotics and Automation
,”
Eur. J. Mech. Environ. Eng.
,
47
(
1
), pp.
11
21
.
2.
Satheeshbabu
,
S.
, and
Krishnan
,
G.
,
2019
, “
Modeling the Bending Behavior of Fiber-Reinforced Pneumatic Actuators Using a Pseudo-rigid-body Model
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031011
.
3.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
4.
Kim
,
H.-I.
,
Han
,
M.-W.
,
Song
,
S.-H.
, and
Ahn
,
S.-H.
,
2016
, “
Soft Morphing Hand Driven by SMA Tendon Wire
,”
Compos. Part B Eng.
,
105
, pp.
138
148
.
5.
Leng
,
J.
,
Lu
,
H.
,
Liu
,
Y.
,
Huang
,
W.
, and
Du
,
S.
,
2009
, “
Shape-Memory Polymers—A Class of Novel Smart Materials
,”
MRS Bull.
,
34
(
11
), pp.
848
855
.
6.
Yuk
,
H.
,
Lin
,
S.
,
Ma
,
C.
,
Takaffoli
,
M.
,
Fang
,
N. X.
, and
Zhao
,
X.
,
2017
, “
Hydraulic Hydrogel Actuators and Robots Optically and Sonically Camouflaged in Water
,”
Nat. Commun.
,
8
(
1
), p.
14230
.
7.
Laschi
,
C.
,
Cianchetti
,
M.
,
Mazzolai
,
B.
,
Margheri
,
L.
,
Follador
,
M.
, and
Dario
,
P.
,
2012
, “
Soft Robot Arm Inspired by the Octopus
,”
Adv. Robot.
,
26
(
7
), pp.
709
727
.
8.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
.
9.
Lotfiani
,
A.
,
Zhao
,
H.
,
Shao
,
Z.
, and
Yi
,
X.
,
2020
, “
Torsional Stiffness Improvement of a Soft Pneumatic Finger Using Embedded Skeleton
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011016
.
10.
Maeder-York
,
P.
,
Clites
,
T.
,
Boggs
,
E.
,
Neff
,
R.
,
Polygerinos
,
P.
,
Holland
,
D.
,
Stirling
,
L.
,
Galloway
,
K.
,
Wee
,
C.
, and
Walsh
,
C.
,
2014
, “
Biologically Inspired Soft Robot for Thumb Rehabilitation
,”
ASME J. Med. Dev.
,
8
(
2
), p.
020933
.
11.
Polygerinos
,
P.
,
Lyne
,
S.
,
Wang
,
Z.
,
Nicolini
,
L. F.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
, and
Walsh
,
C. J.
,
2013
, “
Towards a Soft Pneumatic Glove for Hand Rehabilitation
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Sytems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
1512
1517
12.
Connolly
,
F.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2017
, “
Automatic Design of Fiber-Reinforced Soft Actuators for Trajectory Matching
,”
Proc. Natl. Acad. Sci. USA
,
114
(
1
), pp.
51
56
.
13.
Kim
,
S. Y.
,
Baines
,
R.
,
Booth
,
J.
,
Vasios
,
N.
,
Bertoldi
,
K.
, and
Kramer-Bottiglio
,
R.
,
2019
, “
Reconfigurable Soft Body Trajectories Using Unidirectionally Stretchable Composite Laminae
,”
Nat. Commun.
,
10
(
1
), p.
3464
.
14.
Kan
,
Z.
,
Pang
,
C.
,
Zhang
,
Y.
,
Yang
,
Y.
, and
Wang
,
M. Y.
,
2022
, “
Soft Actuator With Programmable Design: Modeling, Prototyping, and Applications
,”
Soft Robot.
,
9
(
5
), pp.
907
925
.
15.
Ke
,
X.
,
Jang
,
J.
,
Chai
,
Z.
,
Yong
,
H.
,
Zhu
,
J.
,
Chen
,
H.
,
Guo
,
C. F.
,
Ding
,
H.
, and
Wu
,
Z.
,
2022
, “
Stiffness Preprogrammable Soft Bending Pneumatic Actuators for High-Efficient, Conformal Operation
,”
Soft Robot.
,
9
(
3
), pp.
613
624
.
16.
Jiang
,
C.
,
Wang
,
D.
,
Zhao
,
B.
,
Liao
,
Z.
, and
Gu
,
G.
,
2021
, “
Modeling and Inverse Design of Bio-inspired Multi-segment Pneu-net Soft Manipulators for 3d Trajectory Motion
,”
Appl. Phys. Rev.
,
8
(
4
), p.
041416
.
17.
Zhao
,
L.
,
Jiang
,
Y.
,
She
,
C. Y.
,
Chen
,
M.
, and
Balkcom
,
D.
,
2024
, “SoftSnap: Rapid Prototyping of Untethered Soft Robots Using Snap-Together Modules,” preprint arXiv: 2410.19169.
18.
Yao
,
Y.
,
He
,
L.
, and
Maiolino
,
P.
,
2024
, “
Spada: A Toolbox of Designing Soft Pneumatic Actuators for Shape Matching Based on Surrogate Modeling
,”
Robotics Rep.
,
2
(
1
), pp.
1
14
.
19.
Xu
,
Z.
,
Liang
,
J.
, and
Zhou
,
Y.
,
2024
, “
Soft Pneumatic Helical Actuators With Programmable Variable Curvatures
,”
IEEE Robot. Autom. Lett.
,
9
(
7
), pp.
6632
6639
.
20.
Chen
,
M.
,
Liu
,
J.
, and
Skelton
,
R. E.
,
2020
, “
Design and Control of Tensegrity Morphing Airfoils
,”
Mech. Res. Commun.
,
103
, p.
103480
.
21.
Goyal
,
R.
,
Chen
,
M.
,
Majji
,
M.
, and
Skelton
,
R. E.
,
2020
, “
Gyroscopic Tensegrity Robots
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
1239
1246
.
22.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
23.
Liu
,
T.
,
Wu
,
X.
, and
Wang
,
X.
,
2021
, “
Modeling, Analysis and Design of Pneumatic Networks Soft Actuators
,”
2021 IEEE Intenational Conference on Robotics and Biomimetics (ROBIO)
,
Sanya, China
,
Dec. 6–10
, pp.
846
851
.
24.
Liu
,
T.
, and
Wang
,
X.
,
2024
, “
A Novel Inclined Membrane Contact Model for Analyzing the Pneu-net Soft Actuator Lateral Wall Contact
,”
Smart Mater. Struct.
,
33
(
3
), p.
035015
.
25.
Liu
,
T.
, and
Wang
,
X.
,
2024
, “
Modeling and Analysis of Oblique-Chamber and Symmetric Oblique-Chamber Pneu-net Soft Actuators
,”
IEEE Robot. Autom. Lett.
,
9
(
10
), pp.
8682
8689
.
26.
Yeoh
,
O. H.
,
1993
, “
Some Forms of the Strain Energy Function for Rubber
,”
Rubber Chem. Technol.
,
66
(
5
), pp.
754
771
.
You do not currently have access to this content.