Abstract
Legged robots are able to move across irregular terrains and those based on 1-degree-of-freedom planar linkages can be energy efficient but are often constrained by a limited range of gaits which can limit their locomotion capabilities considerably. This article reports the design of novel reconfigurable parallel linkages that not only produce different walking patterns but also realize behaviors beyond locomotion. Experiments with an implemented wearable device able to guide the lower extremity through multiple human-like walking trajectories are presented and the preliminary results validate the proposed approach.
Issue Section:
Research Papers
References
1.
McCarthy
, J. M.
, and Soh
, G. S.
, 2011
, Geometric Design of Linkages
, Springer
, New York
.2.
Wensing
, P. M.
, Posa
, M.
, Hu
, Y.
, Escande
, A.
, Mansard
, N.
, and Prete
, A. D.
, 2024
, “Optimization-Based Control for Dynamic Legged Robots
,” IEEE Trans. Robot.
, 40
, pp. 43
–63
. 3.
Singh
, S.
, Russell
, R. P.
, and Wensing
, P. M.
, 2024
, “On Second-Order Derivatives of Rigid-Body Dynamics: Theory and Implementation
,” IEEE Trans. Robot.
, 40
, pp. 2233
–2253
. 4.
Katayama
, S.
, Murooka
, M.
, and Tazaki
, Y.
, 2023
, “Model Predictive Control of Legged and Humanoid Robots: Models and Algorithms
,” Adv. Robot.
, 37
(5
), pp. 298
–315
. 5.
Kamimura
, A.
, Kurokawa
, H.
, Yoshida
, E.
, Murata
, S.
, Tomita
, K.
, and Kokaji
, S.
, 2005
, “Automatic Locomotion Design and Experiments for a Modular Robotic System
,” IEEE/ASME Trans. Mech.
, 10
(3
), pp. 314
–325
. 6.
Sun
, Y.
, Ma
, S.
, Yang
, Y.
, and Pu
, H.
, 2012
, “Towards Stable and Efficient Legged Race-Walking of an Epaddle-Based Robot
,” Mechatronics
, 23
(1
), pp. 108
–120
. 7.
Paul
, C.
, Roberts
, J. W.
, Lipson
, H.
, and Cuevas
, F. J. V.
, 2005
, “Gait Production in a Tensegrity Based Robot
,” 12th International Conference on Advanced Robotics
, Seattle, WA
, July 18–20
, pp. 216
–222
.8.
Hutter
, M.
, Remy
, C. D.
, Hoepflinger
, M. A.
, and Siegwart
, R.
, 2013
, “Efficient and Versatile Locomotion With Highly Compliant Legs
,” IEEE/ASME Trans. Mech.
, 18
(2
), pp. 449
–458
. 9.
Paul
, C.
, 2006
, “Morphological Computation: A Basis for the Analysis of Morphology and Control Requirements
,” Rob. Auton. Syst.
, 54
(8
), pp. 619
–630
. 10.
Tsujita
, K.
, Kobayashi
, T.
, Inoura
, T.
, and Masuda
, T.
, 2008
, “Gait Transition by Tuning Muscle Tones Using Pneumatic Actuators in Quadruped Locomotion
,” 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Nice, France
, Sept. 22–26
, pp. 2453
–2458
.11.
Cham
, J.
, Karpick
, J.
, and Cutkosky
, M.
, 2004
, “Stride Period Adaptation of a Biomimetic Running Hexapod
,” Int. J. Robot. Res.
, 23
(2
), pp. 141
–153
. 12.
Fukuoka
, Y.
, Kimura
, H.
, and Cohen
, A.
, 2003
, “Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts
,” Int. J. Robot. Res.
, 22
(3
), pp. 187
–202
. 13.
Nansai
, S.
, Rojas
, N.
, Elara
, M.
, Sosa
, R.
, and Iwase
, M.
, 2015
, “On a Jansen Leg With Multiple Gait Patterns for Reconfigurable Walking Platforms
,” Adv. Mech. Eng.
, 7
(3
), pp. 1
–18
. 14.
Robson
, N.
, and McCarthy
, J.
, 2007
, “Kinematic Synthesis With Contact Direction and Curvature Constraints on the Workpiece
,” ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Las Vegas, NV
, Sept. 4–7
, pp. 581
–588
.15.
Robson
, N.
, and Ghosh
, S.
, 2016
, “Geometric Design of Planar Mechanisms Based on Virtual Guides for Manipulation
,” Robotica
, 34
(12
), pp. 2653
–2668
. 16.
Robson
, N.
, Ghosh
, S.
, and Soh
, G.
, 2020
, “Kinematic Synthesis and Design of the Robust Closed Loop Articulated Minimally Actuated (Clam) Hand
,” Robotica
, 38
(11
), pp. 1921
–1939
. 17.
Robson
, N.
, and Soh
, G.
, 2016
, “Geometric Design of Eight-Bar Wearable Devices Based on Limb Physiological Contact Task
,” Mech. Mach. Theory
, 100
, pp. 358
–367
. 18.
Robson
, N.
, Audrey
, V.
, Dwivedi
, A.
, and Kunzmann
, D.
, 2024
, “Robust Multilegged Walking Robots for Interactions With Different Terrains
,” ASME. J. Mech. Rob.
, 16
(1
), p. 011010. 19.
Zhang
, L.
, Wang
, L.
, Wang
, F.
, and Wang
, K.
, 2009
, “Gait Simulation of New Robot for Human Walking on Sand
,” J. Cent. South Univ. Technol. Engl. Ed.
, 16
(12
), pp. 971
–975
. 20.
Ghosh
, S.
, Robson
, N.
, and McCarthy
, J.
, 2015
, “Geometric Design of a Passive Mechanical Knee for Lower Extremity Wearable Devices Based on Anthropomorphic Foot Task Geometry Scaling
,” ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Boston, MA
, Aug. 2–5
, pp. 1
–9
.21.
Craig
, J.
, 2005
, Introduction to Robotics: Mechanics and Control
, Pearson Prentice Hall
, Upper Saddle River, UK
.22.
McCarthy
, J.
, 2019
, Kinematic Synthesis of Mechanisms: A Project Based Approach
, McCarthy Design Associates Publishing
, Irvine, CA
.23.
Åstrand
, P.-O.
, and Rodahl
, K.
, 1986
, Textbook of Work Physiology Physiological Basis of Exercise
, McGraw-Hill
, New York
.24.
Borg
, G.
, 1998
, Simple Rating for Estimation of Perceived Exertion and Pain Scales
, Champaign, IL
.25.
McAtamney
, L.
, and Hignett
, S.
, 1995
, “REBA: A Rapid Entire Body Assessment Method for Investigating Work Related Musculoskeletal Disorders
,” Proceedings of the 31st Annual Conference of the Ergonomics Society of Australia
, Glenelg, Australia
, Dec. 13–15
, pp. 45
–51
.Copyright © 2025 by ASME
You do not currently have access to this content.