This paper presents a topological and dimensional kinematic synthesis methodology that can be used to constrain the movement of kinematic planar, spherical, and spatial revolute–revolute dyads (RR dyads). The approach is inspired by a subcategory of origami called rigid origami, which deals with highly overconstrained spatial deployable linkages. An example is the Miura-ori folding pattern used to deploy solar panels in space. In addition to this application, this linkage also provides an interesting way to constrain general RR dyads so that they perform a single DOF motion. Here, these mechanisms are called origami-guided RR chains, and computer aided design models (CAD) of the planar, spherical and spatial type are presented. The dimensional synthesis approach allows us to constrain consecutive links using R or C joints so that the links satisfy two arbitrarily predefined task positions. This leads to what we call the two-configuration synthesis of linkages, and we examine a concrete synthesis procedure for an origami-guided spatial RR chain, which is also built using rapid prototyping. The procedure actually combines the two-configuration synthesis approach with the synthesis of the spatial TS dyad, and the paper provides an outlook on further ways to apply the two-configuration synthesis and also to synthesize the origami-guided RR chains.

References

1.
Wilson
,
L.
, and
Pellegrino
,
S.
,
Danner
,
R.
,
2013
, “
Origami Sunshield Concepts for Space Telescopes
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, AIAA, p.
12
.
2.
Greenberg
,
H. C.
,
Gong
,
M. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
Mech. Sci.
,
2
, pp.
217
225
.10.5194/ms-2-217-2011
3.
Su
,
H.-J.
,
Castro
,
C. E.
,
Marras
,
A. E.
, and
Hudoba
,
M.
,
2012
, “
Design and Fabrication of DNA Origami Mechanisms and Machines
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
M. Z.
Dai
,
J. S.
, and
Kong
,
X.
, eds., Springer, pp.
487
500
.
4.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
, “
Origami Folding: A Structural Engineering Approach
,”
Origami 5
,
L. P.
Wang-Iverson
,
R. J.
,
and
Yim
,
M.
, eds.,
CRC Press
, pp.
291
304
.
5.
Tachi
,
T.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,”
Proceedings of the International Association for Shell and Spatial Structures
, Symposium 28 September–2 October 2009, Universidad Politecnica de Valencia, Spain.
A.
Domingo
and
C.
Lazaro
, eds.
6.
Wang
,
K.
, and
Chen
,
Y.
,
2011
, “
Rigid Origami to Fold a Flat Paper into a Patterned Cylinder
,”
Origami 5
,
L. P.
Wang-Iverson
,
R. J.
,
and
Yim
,
M.
, eds.,
CRC Press
,
Boca Raton, FL
., pp.
265
276
.
7.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,” Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2010, November 8–12 2010, Shanghai, China.
8.
Deng
,
Z.
,
Huang
,
H.
,
Li
,
B.
, and
Liu
,
R.
,
2011
, “
Synthesis of Deployable/Foldable Single Loop Mechanisms With Revolute Joints
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031006
.10.1115/1.4004029
9.
Zhang
,
K.
, and
Dai
,
J. S.
,
2012
, “
Kinematics of an Overconstrained 6R linkage With 2-Fold Rotational Symmetry
,”
Latest Advances in Robot Kinematics
,
J.
Lenarcic
and
M.
Husty
, eds.,
Springer
,
New York
, pp.
229
236
.
10.
Viquerat
,
A. D.
,
Hutt
,
T.
, and
Guest
,
S. D.
,
2013
, “
A Plane Symmetric 6R Foldable Ring
,”
Mech. Mach. Theory
,
63
(
1
), pp.
73
88
.10.1016/j.mechmachtheory.2012.12.004
11.
Baker
,
J. E.
,
2013
, “
A Collapsible Network of Similar Pairs of Nested Bennett Linkages
,”
Mech. Mach. Theory
,
59
(
1
), pp.
119
124
.10.1016/j.mechmachtheory.2012.09.003
12.
Wei
,
G.
, and
Dai
,
J. S.
,
2012
, “
Synthesis of a Family of Regular Deployable Polyhedral
,”
Latest Advances in Robot Kinematics
,
J.
Lenarcic
and
M.
Husty
, eds.,
Springer
,
New York
, pp.
123
130
.
13.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,” Science Report No. 618, Institute of Space and Astronautical Science.
14.
Huffman
,
D. A.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
25
(
10
), pp.
1010
1019
.10.1109/TC.1976.1674542
15.
Hull
,
T. C.
,
2002
, “
The Combinatorics of Flat Folds: A Survey
,”
Proceedings of the 3rd International Meeting of Origami Science, Mathematics, and Education, Research of Pattern Formation, AK Peters
.
16.
Belcastro
,
S.
, and
Hull
,
T. C.
,
2002
, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations
,”
Linear Algebra Appl.
,
348
, pp.
273
282
.10.1016/S0024-3795(01)00608-5
17.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2002
, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
J. Mech. Eng. Sci.
,
216
(
10
), pp.
959
970
.10.1243/095440602760400931
18.
Wei
,
G.
, and
Dai
,
J. S.
,
2009
, “
Geometry and Kinematic Analysis of an Origami-Evolved Mechanism Based on Artmimetics
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
M. Z.
Dai
,
J. S.
, and
Kong
,
X.
, eds.,
IEEE
, pp.
450
455
.
19.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modelling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc. London
,
466
, pp.
2155
2174
.10.1098/rspa.2009.0625
20.
Tsai
,
L.-W.
, and
Roth
,
B.
,
1973
, “
A Note on the Design of Revolute-Revolute Cranks
,”
Mech. Mach. Theory
,
8
(
1
), pp.
23
31
.10.1016/0094-114X(73)90004-9
21.
Perez
,
A.
, and
McCarthy
,
J. M.
,
2003
, “
Dimensional Synthesis of Bennett Linkages
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
98
104
.10.1115/1.1539507
22.
Brunnthaler
,
K.
,
Schröcker
,
H.-P.
, and
Husty
,
M.
,
2005
, “
A New Method for the Synthesis of Bennett Mechanisms
,”
Proceedings of CK2005, International Workshop on Computational Kinematics
.
23.
Soh
,
G. S.
,
Perez Gracia
,
A.
, and
McCarthy
,
J. M.
,
2006
, “
The Kinematic Synthesis of Mechanically Constrained Planar 3R Chains
,”
Proceedings of EuCoMeS, First European Conference on Mechanism Science
,
M.
Husty
and
H.-P.
Schröcker
, eds.
24.
Krovi
,
V.
,
Anathasuresh
,
G. K.
, and
Kumar
,
V.
,
2002
, “
Kinematic and Kinetostatic Synthesis of Planar Coupled Serial Chain Mechanisms
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
301
312
.10.1115/1.1464563
25.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
, 2nd ed.,
Springer Interdisciplinary Applied Mathematics
,
New York
.
26.
McCarthy
,
J. M.
,
1990
,
An Introduction to Theoretical Kinematics
,
The MIT Press
,
Cambridge, Massachusetts, London, England
.
27.
Luck
,
K.
, and
Modler
,
K.-H.
,
1995
,
Getriebetechnik—Analyse, Synthese, Optimierung, 2. Auflage
,
Springer
,
Berlin Heidelberg
.
28.
Robson
,
N. P.
, and
McCarthy
,
J. M.
,
2005
, “
The Synthesis of Planar 4R Linkages With Three Task Positions and Two Specified Velocities
,”
ASME International Design Engineering Technical Conferences, 29th Mechanisms and Robotics Conference
, ASME, pp.
425
432
.
29.
Lee
,
E.
, and
Mavroidis
,
D.
,
2002
, “
Solving the Geometric Design Problem of Spatial 3R Manipulators Using Polynomial Homotopy Continuation
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
652
661
.10.1115/1.1515796
30.
Perez
,
A.
, and
McCarthy
,
J. M.
,
2004
, “
Dual Quaternion Synthesis of Constrained Robotic Sytems
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
425
435
.10.1115/1.1737378
31.
Simo-Serra
,
E.
,
Perez-Gracia
,
A.
,
Moon
,
H.
, and
Robson
,
N.
,
2012
, “
Kinematic Synthesis of Multi-Fingered Robotic Hands for Finite and Infinitisimal Tasks
,”
Latest Advances in Robot Kinematics
,
J.
Lenarcic
and
M.
Husty
, eds.,
Springer
,
New York
, pp.
173
181
.
You do not currently have access to this content.