This paper presents a new kinematics model for linear-actuated symmetrical spherical parallel manipulators (LASSPMs) which are commonly used considering their symmetrical kinematics and dynamics properties. The model has significant advantages in solving the forward kinematic equations, and in analytically obtaining singularity loci and the singularity-free workspace. The Cayley formula, including the three Rodriguez–Hamilton parameters from a general rotation matrix, is provided and used in describing the rotation motion and geometric constraints of LASSPMs. Analytical solutions of the forward kinematic equations are obtained. Then singularity loci are derived, and represented in a new coordinate system with the three Rodriguez–Hamilton parameters assigned in three perpendicular directions. Limb-actuation singularity loci are illustrated and forward kinematics (FK) solution distribution in the singularity-free zones is discussed. Based on this analysis, unique forward kinematic solutions of LASSPMs can be determined. By using Cayley formula, analytical workspace boundaries are expressed, based on a given mechanism structure and input actuation limits. The singularity-free workspace is demonstrated in the proposed coordinate system. The work gives a systematic method in modeling kinematics, singularity and workspace analysis which provides new optimization design index and a simpler kinematics model for dynamics and control of LASSPMs.

References

1.
Gosselin
,
C.
,
St. Pierre
,
E.
, and
Gagné
,
M.
,
1996
, “
On the Development of the Agile Eye: Mechanical Design, Control Issues and Experimentation
,”
IEEE Rob. Autom. Mag.
,
3
(
4
), pp.
29
37
.10.1109/100.556480
2.
Gosselin
,
C.
, and
Angeles
,
J.
,
1989
, “
The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator
,”
ASME J. Mech. Des.
,
111
(
2
), pp.
202
207
.10.1115/1.3258984
3.
Vischer
,
P.
, and
Clavel
,
R.
,
2000
, “
Argos: A Novel 3-DOF Parallel Wrist Mechanism
,”
Int. J. Robot. Res.
,
19
(
1
), pp.
5
11
.10.1177/02783640022066707
4.
Gregorio
,
R. D.
,
2001
, “
A New Parallel Wrist Using Only Revolute Pairs: The 3-RUU Wrist
,”
Robotica
,
19
(
3
), pp.
305
309
.10.1017/S0263574700003192
5.
Cox
,
D.
, and
Tesar
,
D.
,
1989
, “
The Dynamic Model of a Three-Degree-of-Freedom Parallel Robotic Shoulder Module
,”
Fourth International Conference on Advanced Robotics
, Columbus, OH, June 13–15, pp. 475–487.10.1007/978-3-642-83957-3_34
6.
Hofschulte
,
J.
,
Seebode
,
M.
, and
Gerth
,
W.
,
2004
, “
Parallel Manipulator Hip Joint for a Bipedal Robot
,”
Climbing and Walking Robots
,
Springer
,
New York
, pp.
601
609
.
7.
Cui
,
L.
, and
Dai
,
J. S.
,
2012
, “
Reciprocity-Based Singular Value Decomposition for Inverse Kinematic Analysis of the Metamorphic Multifingered Hand
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
034502
.10.1115/1.4006187
8.
Cui
,
L.
, and
Dai
,
J. S.
,
2011
, “
Posture, Workspace, and Manipulability of the Metamorphic Multifingered Hand With an Articulated Palm
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021001
.10.1115/1.4003414
9.
Li
,
T.
, and
Payandeh
,
S.
,
2002
, “
Design of Spherical Parallel Mechanisms for Application to Laparoscopic Surgery
,”
Robotica
,
20
(
2
), pp.
133
138
.10.1017/S0263574701003873
10.
Dai
,
J.
,
Zhao
,
T.
, and
Nester
,
C.
,
2004
, “
Sprained Ankle Physiotherapy Based Mechanism Synthesis and Stiffness Analysis of Rehabilitation Robotic Devices
,”
Autonom. Rob.
,
16
(
2
), pp.
207
218
.10.1023/B:AURO.0000016866.80026.d7
11.
Gogu
,
G.
,
2012
, “
Parallel Wrists With Three Degrees of Freedom, Structural Synthesis of Parallel Robots
,”
Solid Mechanics and Its Applications
, Vol.
183
,
Springer
, Dordrecht, The Netherlands, pp.
483
552
.
12.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
,
1993
, “
Echelon Form Solution of Direct Kinematics for the General Fully-Parallel Spherical Wrist
,”
Mech. Mach. Theory
,
28
(
4
), pp.
553
561
.10.1016/0094-114X(93)90035-T
13.
Kong
,
X.-W.
,
1998
, “
Forward Displacement Analysis of Three New Classes of Analytic Spherical Parallel Manipulators
,”
ASME
Paper No. DETC98/MECH-5953. 10.1115/DETC98/MECH-5953
14.
Gan
,
D. M.
,
Seneviratne
,
L. D.
, and
Dias
,
J.
,
2012
, “
Design and Analytical Kinematics of a Robot Wrist Based on a Parallel Mechanism
,”
14th International Symposium on Robotics and Applications
, Puerto Vallarta, Mexico, June 24–28, pp. 1–6.
15.
Karouia
,
M.
, and
Hervé
,
J. M.
,
2000
, “
A Three-DOF Tripod for Generating Spherical Rotation
,”
Advances in Robot Kinematics
,
J.
Lenarcic
, and
M. M.
Stanisic
, eds.,
Kluwer Academic Publishers
, Amsterdam,
The Netherlands
, pp.
395
402
.
16.
Tsai
,
L. W.
, and
Sameer
,
J.
,
2000
, “
Kinematics and Optimization of a Spatial 3-UPU Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
439
446
.10.1115/1.1311612
17.
Di Gregorio
,
R.
,
2003
, “
Kinematics of the 3-UPU Wrist
,”
Mech. Mach. Theory
,
38
(
3
), pp.
253
263
.10.1016/S0094-114X(02)00066-6
18.
Zhang
,
K. T.
,
Dai
,
J. S.
, and
Fang
,
Y. F.
,
2012
, “
Geometric Constraint and Mobility Variation of Two 3SvPSv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
.10.1115/1.4007920
19.
Gosselin
,
C. M.
,
Sefrioui
,
J.
, and
Richard
,
M. J.
,
1994
, “
On the Direct Kinematics of Spherical Three-Degree-of-Freedom Parallel Manipulators of General Architecture
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
594
598
.10.1115/1.2919419
20.
Huang
,
Z.
, and
Yao
,
Y. L.
,
1999
, “
A New Closed-Form Kinematics of the Generalized 3-DOF Spherical Parallel Manipulator
,”
Robotica
,
17
(
5
), pp.
475
485
.10.1017/S0263574799001630
21.
Alizade
,
R. I.
,
Tagiyiev
,
N. R.
, and
Duffy
,
J.
,
1994
, “
A Forward and Reverse Displacement Analysis of an In-Parallel Spherical Manipulator
,”
Mech. Mach. Theory
,
29
(
1
), pp.
125
137
.10.1016/0094-114X(94)90025-6
22.
Ji
,
P.
, and
Wu
,
H.
,
2001
, “
Algebraic Solution to Forward Kinematics of 3-DOF Spherical Parallel Manipulator
,”
J. Rob. Syst.
,
18
(
5
), pp.
251
257
.10.1002/rob.1020
23.
Bai
,
S. P.
,
Hansen
,
M. R.
, and
Angeles
,
J.
,
2009
, “
A Robust Forward-Displacement Analysis of Spherical Parallel Robots
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2204
2216
.10.1016/j.mechmachtheory.2009.07.005
24.
Bonev
,
I. A.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2006
, “
Working and Assembly Modes of the Agile Eye
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2006
), Orlando, FL, May 15–19, pp.
2317
2322
.10.1109/ROBOT.2006.1642048
25.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2010
, “
A Formula That Produces a Unique Solution to the Forward Displacement Analysis of a Quadratic Spherical Parallel Manipulator: The Agile Eye
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
044501
.10.1115/1.4002077
26.
Kong
,
X.
,
Gosselin
,
C. M.
, and
Ritchie
,
J. M.
,
2011
, “
Forward Displacement Analysis of a Linearly Actuated Quadratic Spherical Parallel Manipulator
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011007
.10.1115/1.4003079
27.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
North-Holland
,
New York
, pp.
9
11
.
28.
Gan
,
D. M.
,
Liao
,
Q. Z.
,
Dai
,
J. S.
, and
Wei
,
S. M.
,
2010
, “
Design and Kinematics Analysis of a New 3CCC Parallel Mechanism
,”
Robotica
,
28
(
7
), pp.
1065
1072
.10.1017/S0263574709990555
29.
Lee
,
T.-Y.
, and
Shim
,
J.-K.
,
2003
, “
Improved Dialytic Elimination Algorithm for the Forward Kinematics of the General Stewart–Gough Platform
,”
Mechanism and Machine Theory
,
38
(
6
), pp.
563
577
.10.1016/S0094-114X(03)00009-0
30.
Gan
,
D. M.
,
Liao
,
Q. Z.
,
Dai
,
J. S.
,
Wei
,
S. M.
, and
Seneviratne
,
L. D.
,
2009
, “
Forward Displacement Analysis of a New 1CCC-5SPS Parallel Mechanism Using Grobner Theory
,”
Proc. Inst. Mech. Eng., Part C
,
223
(
C5
), pp.
1233
1241
.10.1243/09544062JMES1185
31.
Husty
,
M. L.
,
1996
, “
An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms
,”
Mech. Mach. Theory
,
31
(
4
), pp.
365
380
.10.1016/0094-114X(95)00091-C
32.
Schröcker
,
H.-P.
, and
Husty
,
M. L.
,
2007
, “
Kinematic Mapping Based Assembly Mode Evaluation of Spherical Four-Bar Mechanisms
,”
12th IFToMM World Congress
, Besançon, France, June 18–21. Available at http://www.iftomm.org/iftomm/proceedings/proceedings_WorldCongress/WorldCongress07/articles/sessions/papers/A7.pdf
33.
Hayes
,
M. J. D.
,
Husty
,
M. L.
, and
Zsombor-Murray
,
P.
,
1999
, “
Kinematic Mapping of Planar Stewart–Gough Platforms
,”
17th Canadian Congress of Applied Mechanics (CanCAM '99)
, Hamilton, ON, Canada, May 30–June 3, pp.
319
320
.
34.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
35.
Wei
,
G.
, and
Dai
,
J. S.
,
2010
, “
Geometric and Kinematic Analysis of a Seven-Bar Three-Fixed-Pivoted Compound-Joint Mechanism
,”
Mech. Mach. Theory
,
45
(
2
), pp.
170
184
.10.1016/j.mechmachtheory.2009.05.009
36.
Sefrioui
,
J.
, and
Gosselin
,
C. M.
,
1994
, “
Étude et Représentation des Lieux de Singularité des Manipulateurs Parallèles Sphériques à Trois Degrés de Liberté Avec Actionneurs Prismatiques
,”
Mech. Mach. Theory
,
29
(
4
), pp.
559
579
.10.1016/0094-114X(94)90095-7
37.
Alici
,
G.
, and
Shirinzadeh
,
B.
,
2004
, “
Topology Optimization and Singularity Analysis of a 3-SPS Parallel Manipulator With a Passive Constraining Spherical Joint
,”
Mech. Mach. Theory
,
39
(
2
), pp.
215
235
.10.1016/S0094-114X(03)00116-2
38.
Gosselin
,
C. M.
, and
Wang
,
J.
,
2002
, “
Singularity Loci of A Special Class of Spherical Three-Degree-of-Freedom Parallel Mechanisms With Revolute Actuators
,”
Int. J. Rob. Res.
,
21
(
7
), pp.
649
659
.10.1177/027836402322023231
39.
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2005
, “
Singularity Loci of Spherical Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation
, (
ICRA 2005
), Barcelona, Spain, Apr. 18–22, pp.
2968
2973
.10.1109/ROBOT.2005.1570563
40.
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2006
, “
Analytical Determination of the Workspace of Symmetrical Spherical Parallel Mechanisms
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
1011
1017
.10.1109/TRO.2006.878983
41.
Yang
,
G.
, and
Chen
,
I.-M.
,
2006
, “
Equivolumetric Partition of Solid Spheres With Applications to Orientation Workspace Analysis of Robot Manipulators
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
869
879
.10.1109/TRO.2006.878792
42.
Merlet
,
J.
,
1995
, “
Determination of the Orientation Workspace of Parallel Manipulators
,”
J. Intell. Rob. Syst.
,
13
(
2
), pp.
143
160
.10.1007/BF01254849
43.
Chen
,
C.
, and
Jackson
,
D.
,
2011
, “
Parameterization and Evaluation of Robotic Orientation Workspace: A Geometric Treatment
,”
IEEE Trans. Rob.
,
27
(
4
), pp.
656
663
.10.1109/TRO.2011.2135230
44.
Kong
,
X.
,
2014
, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method
,”
Mech. Mach. Theory
,
74
, pp.
188
201
.10.1016/j.mechmachtheory.2013.12.010
You do not currently have access to this content.