The nonuniformity of pore size and pore distribution of the current hemodialysis membrane results in low efficiency of uremic solute removal as well as the loss of albumin. By using nanotechnology, an anodic alumina membrane (ceramic membrane) with self-organized nanopore structure was produced. The objective of this study was to fabricate nanoporous alumina membranes and investigate the correlation between various anodization conditions and the pore characteristics in order to find its potential application in artificial kidney/hemodialysis. An aluminum thin film was oxidized in two electrolytes consisting of 3% and 5% sulfuric acid and 2.7% oxalic acid. The applied voltages were 12.5, 15, 17.5, and 20V for sulfuric acid and 20, 30, 40, and 50V for oxalic acid. Pore size and porosity were determined by analyzing Scanning Electron Microscopy (SEM) images and hydraulic conductivity was measured. Results show that pore size increased linearly with voltage. Acid concentration affected pore formation but not pore size and pore distribution. Hydraulic conductivity of the ceramic membrane was higher than that of the polymer dialysis membrane. The optimal formation conditions for self-organized nanopore structure of the ceramic membrane were 12.5-17.5V in 3–5% sulfuric acid at 0°C. Under these conditions, ceramic membranes with pores size of 10nm diameter can be produced. In conclusion, we used anodic alumina technology to reliably produce in quantity ceramic membranes with a pore diameter of 10-50nm. Because of more uniform pore size, high porosity, high hydraulic conductivity, and resistance to high temperature, the ceramic membrane has the potential application as a hemodialysis membrane.

1.
Clark
,
W. R.
, and
Ronco
,
C.
, 2001, “
Determinants of Hemodialyzer Performance and the Potential Effect on Clinical Out Come
,”
Nephrol. Dial Transplant
0931-0509,
16
(suppl
5
), pp.
56
60
.
2.
Keller
,
F.
,
Hunter
,
M. S.
, and
Robinson
,
D. L.
, 1953, “
Structural Features of Oxide Coatings on Aluminum
,”
J. Electrochem. Soc.
0013-4651,
100
, pp.
411
419
.
3.
Martin
,
C. H.
, 1996, “
Membrane-Based Synthesis of Nanomaterials
,”
Chem. Mater.
0897-4756,
8
, pp.
1739
1746
.
4.
Edwards
,
J. D.
, and
Keller
,
F.
, 1941, “
Formation of Anodic Coatings on Aluminum
,”
Trans. Electrochem. Soc.
0096-4743,
79
, pp.
135
144
.
5.
Edwards
,
J. D.
, and
Keller
,
F.
, 1944, “
The Structure of Anodic Oxide Coatings
,”
Trans. Am. Inst. Min., Metall. Pet. Eng.
0096-4778,
156
, pp.
288
299
.
6.
Hunter
,
M. S.
, and
Fowle
,
P.
, 1954, “
Factors Affecting The Formation of Anodic Oxide Coatings
,”
J. Electrochem. Soc.
0013-4651,
101
, pp.
514
519
.
7.
Wood
,
G. C.
,
O’Sullivan
,
J. P.
, and
Vaszko
,
B.
, 1968, “
The Direct Observation of Barrier Layers in Porous Anodic Oxide Films
,”
J. Electrochem. Soc.
0013-4651,
115
, pp.
618
620
.
8.
Thompson
,
G. E.
,
Furneaux
,
R. C.
,
Wood
,
G. C.
,
Richardson
,
J. A.
, and
Goode
,
J. S.
, 1978, “
Nucleation And Growth of Porous Anodic Films on Aluminum
,”
Nature (London)
0028-0836,
272
, pp.
433
435
.
9.
Masuda
,
H.
, and
Satoh
,
M.
, 1996, “
Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
35
, pp.
126
129
.
10.
Masuda
,
H.
, and
Fukuda
,
K.
, 1995, “
Ordered Metal Nanohole Arrays Made by A Two-Step Replication of Honeycomb Structures of Anodic Alumina
,”
Science
0036-8075,
268
, pp.
1466
1468
.
11.
Kudrawiec
,
R.
,
Misiewicz
,
J.
,
Bryja
,
L.
,
Molchan
,
I. S.
, and
Gaponenko
,
N. V.
, 2002, “
Photoluminescence Investigation of Porous Anodic Alumina With Spin-on Europium-Containing Titania Sol-Gel Films
,”
J. Alloys Compd.
0925-8388,
341
, pp.
211
213
.
12.
Gaponenko
,
N. V.
,
Molchan
,
I. S.
,
Thompson
,
G. E.
,
Skeldon
,
P.
,
Pakes
,
A.
,
Kudrawiec
,
R.
,
Bryja
,
L.
, and
Misiewicz
,
J.
, 2002, “
Photoluminescence of Eu-Doped Titania Xerogel Spin-on Deposited on Porous Anodic Alumina
,”
Sens. Actuators, A
0924-4247,
99
, pp.
71
73
.
13.
Varghese
,
O. K.
,
Gong
,
D. W.
,
Paulose
,
M.
,
Ong
,
K. G.
,
Grimes
,
C. A.
, and
Dickey
,
E. C.
, 2002, “
Highly Ordered Nanoporous Alumina Films: Effect of Pore Size and Uniformity on Sensing Performance
,”
J. Mater. Res.
0884-2914,
17
, pp.
1162
1171
.
14.
Lew
,
K. K.
,
Reuther
,
C.
,
Carim
,
A. H.
,
Redwing
,
J. M.
, and
Martin
,
B. R.
, 2002, “
Template-Directed Vapor-Liquid-Solid Growth of Silicon Nanowires
,”
J. Vac. Sci. Technol. B
1071-1023,
20
, pp.
389
392
.
15.
Dion
,
I.
,
Bordenave
,
L.
,
Lefebvre
,
F.
,
Bareille
,
R.
,
Baquey
,
Ch.
,
Monties
,
J. R.
, and
Havlik
,
P.
, 1994, “
Physio-Chemistry and Cytotoxicity of Ceramics
,”
Mater. Med. Pol.
0025-5246,
5
, pp.
18
24
.
16.
Takami
,
Y.
,
Nakazawa
,
T.
,
Makinouchi
,
K.
,
Glueck
,
J.
, and
Nose
,
Y.
, 1997, “
Biocompatability of Alumina Ceramic and Polyethylene as Materials Bearings of a Centrifugal Blood Pump
,”
J. Biomed. Mater. Res.
0021-9304,
36
, pp.
381
386
.
17.
Takami
,
Y.
,
Yamane
,
S.
,
Makinouchi
,
K.
,
Otsuka
,
G.
,
Glueck
,
J.
,
Benkowski
,
R.
, and
Nose
,
Y.
, 1998, “
Protein Adsorption Onto Ceramic Surfaces
,”
J. Biomed. Mater. Res.
0021-9304,
40
, pp.
24
30
.
18.
Huang
,
Z.
, 2003, “
A Study of Novel and Optimal Technology for Hemodialysis
,” Ph.D. thesis, University of Kentucky, Lexington, KY.
19.
Parameswaran
,
S.
,
Brown
,
L. V.
, and
Lai-Fook
,
S. J.
, 1998, “
Effect of Flow on Hydraulic Conductivity and Reflection Coefficient of Rabbit Mesentery
,”
Microcirculation (Philadelphia)
1073-9688,
5
, pp.
265
274
.
20.
Wu
,
W. C.
, 2002, “
Fabrication of Vertically Aligned Carbon Nanotubes and Horizontal Nano Structures
,” Master thesis, University of Kentucky, Lexington, KY.
21.
Jessensky
,
O.
,
Muller
,
F.
, and
Gosele
,
U.
, 1998, “
Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina
,”
J. Electrochem. Soc.
0013-4651,
45
, pp.
3735
3740
.
22.
Liao
,
Z.
,
Poh
,
C. K.
,
Huang
,
Z.
,
Hardy
,
P. A.
,
Gao
,
D.
, and
Clark
,
W. R.
, 2002, “
Measurement of Hollow-Fiber-Membrane Transport Properties in Hemodialysis (Abstract)
,”
ASAIO J.
1058-2916,
48
, p.
179
.
23.
Liao
,
Z.
, 2002, “
Numerical and Experimental Studies of Mass Transfer in Artificial Kidney and Hemodialysis
,” Ph.D. thesis, University of Kentucky, Lexington, KY.
You do not currently have access to this content.