Manual wheelchair propulsion (MWP) is an inefficient and physically straining process. A reliably fabricated and instrumented wheel can help researchers to accurately calculate the forces and moments exerted by the wheelchair users and propose strategies to improve MWP. In this study, an instrumented wheel is designed, fabricated, and validated by using general uncertainty analysis. A six-component transducer is used to measure three-dimensional forces and moments applied by the wheelchair user on the handrim. The output of the transducer are forces and moments, which are directly transmitted to a PC using a USB port. By developing the transformation equations, the actual forces and moments on the hand of the wheelchair user are calculated. The angular position of the hand on the handrim is calculated from the kinetic data obtained through the instrumented wheel, and the derived equations. The general uncertainty analysis method is used to calculate the uncertainty values for the variables of interest with the Taylor series expansions. An analysis of the results shows that it is possible to obtain reliable information for MWP by using the instrumented wheel. Most of the data have uncertainties under 5% during much of the propulsion phase, and the patterns and overall behavior of the results are comparable to published data.

1.
Bayley
,
J. C.
,
Cochran
,
T. P.
, and
Sledge
,
C. B.
, 1987, “
The Weight Bearing Shoulder: the Impingement Syndrome in Paraplegics
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
69
, pp.
676
678
.
2.
United States Census Bureau (June 16, 2003), 1997, “
Americans With Disabilities: Household Economic Studies
,” HearingLoss.org, ⟨http://www.hearingloss.org/html/item_coalition_tricare_comment. HTM#_edn3http://www.hearingloss.org/html/item_coalition_tricare_comment. HTM#_edn3⟩, June 23, 2005.
3.
Boninger
,
M. L.
,
Cooper
,
R. A.
,
Shimada
,
S. D.
, and
Rudy
,
T. E.
, 1998, “
Shoulder and Elbow Motion During Two Speeds of Wheelchair Propulsion: a Description Using a Local Coordinate System
,”
Spinal Cord
1362-4393,
36
, pp.
418
426
.
4.
van der Woude
,
L. H. V.
,
Formanoy
,
M.
, and
de Groot
,
S.
, 2003, “
Hand Rim Configuration: Effect on Physical Strain and Technique in Unimpaired Subjects?
,”
Med. Eng. Phys.
1350-4533,
25
, pp.
765
774
.
5.
Strauss
,
M. G.
,
Moeinzadeh
,
M. H.
,
Schneller
,
M.
, and
Trimble
,
J.
, 1989, “
The Development of an Instrumented Wheel to Determine the Handrim Forces During Wheelchair Propulsion
,”
Proceedings of the American Society of Mechanical Engineers (ASME)
, Winter Annual Meeting, pp.
53
54
.
6.
Asato
,
K. T.
,
Cooper
,
R. A.
,
Robertson
,
R. N.
, and
Ster
.
J. F.
, 1993, “
SMARTWheel: Development and Testing of a System for Measuring Manual Wheelchair Propulsion Dynamics
,”
IEEE Trans. Biomed. Eng.
0018-9294,
40
(
12
), pp.
1320
1324
.
7.
van der Linden
,
M. L.
,
Valent
,
L.
,
Veeger
,
H. E.
, and
van der Woude
,
L. H. V.
, 1996, “
The Effect of Wheelchair Handrim Tube Diameter on Propulsion Efficiency and Force Application (The Diameter and Efficiency in Wheelchairs)
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
4
(
3
), pp.
123
132
.
8.
Cooper
,
R. A.
, and
Robertson
,
R. N.
, 1997, “
Methods for Determining Three-Dimensional Wheelchair Pushrim Forces and Moments: A Technical Note
,”
J. Rehabil. R. D
0742-3241,
34
(
2
), pp.
162
171
.
9.
Rozendal
,
L. A.
, and
Veeger
,
H. E. L.
, 2000, “
Force Direction in Manual Wheel Chair Propulsion: Balance Between Effect and Cost
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
15
(
1
), pp.
S39
S41
.
10.
Boninger
,
M. L.
,
Souza
,
A. L.
,
Cooper
,
R. A.
,
Fitzgerald
,
S. G.
,
Koontz
,
A. M.
, and
Fay
,
B. T.
, 2002, “
Propulsion Patterns and Pushrim biomechanics in Manual Wheelchair Propulsion
,”
Arch. Phys. Med. Rehabil.
0003-9993,
83
, pp.
718
723
.
11.
Guo
,
L.
,
Su
,
F.
,
Wu
,
H.
, and
An
,
K.
, 2003, “
Mechanical Energy and Power Flow of the Upper Extremity in Manual Wheelchair Propulsion
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
18
, pp.
106
114
.
12.
Fay
,
B. T.
,
Boninger
,
M. L.
,
Fitzgerald
,
S. G.
,
Souza
,
A. L.
,
Cooper
,
R. A.
, and
Koontz
,
A. M.
, 2004, “
Manual Wheelchair Pushrim Dynamics in People With Multiple Sclerosis
,”
Arch. Phys. Med. Rehabil.
0003-9993,
85
, pp.
935
942
.
13.
Hintzy
,
F.
, and
Tordi
,
N.
, 2004, “
Mechanical Efficiency During Hand-Rim Wheelchair Propulsion: Effects of Base-Line Subtraction and Power Output
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
,
343
349
.
14.
Wei
,
S.
,
Huang
,
S.
,
Chuan-Jiang
,
J.
, and
Chiu
,
J.
, 2003, “
Wrist Kinematic Characterization of Wheelchair Propulsion in Various Seating Position: Implication to Wrist Pain
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
18
,
S46
S52
.
15.
Veeger
,
H. E. J.
,
Lute
,
E. M. C.
,
Roeleveld
,
K.
, and
van der Woude
,
H. H. V.
, 1992, “
Differences in Performance Between Trained and Untrained Subjects During a 30-s Sprint Test in a Wheelchair Ergometer
,”
Eur. J. Appl. Physiol.
0301-5548,
64
, pp.
158
164
.
16.
van Kemenade
,
C. H.
,
te Kulve
,
K. L.
,
Dallmeijer
,
A. J.
,
van der Woude
,
H. E. V.
, and
Veeger
,
H. E. J.
, 1999, “
Changes in Wheelchair Propulsion Technique During Rehabilitation
,”
L.
van der Woude
,
M. T. E.
Hopman
, and
van Kemenade
, eds.,
Biomedical Aspects of Manual Wheelchair Propulsion
,
IOS Press
, Amsterdam, The Netherlands, pp.
104
114
.
17.
Wu
,
H. W.
,
Berglund
,
L. J.
,
Su
,
F. C.
,
Yu
,
B.
,
Westreich
,
A.
,
Kim
,
K. J.
, and
An
,
K. N.
, 1998, “
An Instrumented Wheel for Kinetic Analysis of Wheelchair Propulsion
,”
J. Biomech. Eng.
0148-0731,
120
, pp.
534
535
.
18.
Cooper
,
R. A.
,
Boninger
,
M. L.
,
VanSickle
,
D. P.
,
Robertson
,
R. N.
, and
Shimada
,
S. D.
, 1997, “
Uncertainty Analysis for Wheelchair Propulsion Dynamics
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
5
(
2
), pp.
130
139
.
19.
Cooper
,
R. A.
,
Boninger
,
M. L.
,
VanSickle
,
D. P.
, and
DiGiovine
,
C. P.
, 1999, “
Instrumentation for Measuring Wheelchair Propulsion Biomechanics
,”
L.
van der Woude
,
M. T. E.
Hopman
, and
van Kemenade
, eds.,
Biomedical Aspects of Manual Wheelchair Propulsion
,
IOS Press
, Amsterdam, The Netherlands, pp.
104
114
.
20.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
21.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1999,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
, New York, pp.
47
79
.
22.
VanSickle
,
D. P.
,
Cooper
,
R. A.
,
Boninger
,
M. L.
,
Robertson
,
R. N.
, and
Shimada
,
S. D.
, 1998, “
A Unified Method for Calculating the Center of Pressure During Wheelchair Propulsion
,”
Ann. Biomed. Eng.
0090-6964,
26
, pp.
328
336
.
23.
Groot
,
S. D.
,
Veeger
,
H. E. J.
,
Hollander
,
A. P.
, and
van der Woude
,
L. H. V.
, 2002, “
Consequence of Feedback-Based Learning of an Effective Handrim Wheelchair Force Production on Mechanical Efficiency
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
17
, pp.
219
226
.
24.
Robertson
,
R. N.
,
Boninger
,
M. L.
,
Cooper
,
R. A.
, and
Shimada
,
S. D.
, 1996, “
Pushrim Forces and Joint Kinetics During Wheelchair Propulsion
,”
Arch. Phys. Med. Rehabil.
0003-9993,
77
, pp.
856
864
.
You do not currently have access to this content.