Over 400,000 total knee replacement procedures (TKR) are performed annually in the United States. This paper focuses on the development of a battery-less wireless instrumented tibial tray for performance feedback in TKR implants. The proposed instrumented tibial tray is powered internally by an integrated piezoelectric energy harvesting system. Energy is harvested during the walking of the patient when forces are exerted on the tibial component. The sensors and wireless electronics are entirely powered from the harvested energy. This tibial tray is also instrumented with capacitive force sensors and an ultra low-power method to measure the capacitive force sensors. A bench top test rig is developed for testing the battery-less wireless knee replacement implant. For a person with a body weight of 55 kg, the energy harvesting system can fully charge the storage capacitors in 11 steps and can harvest an average of 1051 μJ per step. To power the force measurement system for ten seconds and to transmit the data, the piezoelectric energy harvesting system must be charged before the force measurement process is initiated by a minimum of 11 steps and a minimum of two steps must be taken during the force measurement process. During the force measurement process, each force sensor is sampled at a frequency of 10 Hz for ten seconds; thereafter, all of the data is transmitted to the RF base station. The resulting capacitive force sensors adequately represented cyclic loads; however, the sensors demonstrated some issues with repeatability.

References

1.
Kurtz
,
S.
,
Ong
,
K.
,
Edmund
,
L.
,
Mowat
,
F.
, and
Halpern
,
M.
,
2007
, “
Projections of Primary and Revision Hip and Knee Arthroplasty in the United States From 2005 to 2030
,”
J. Bone Jt. Surg.
,
89
(4)
, pp.
780
785
.10.2106/JBJS.F.00222
2.
National Institutes of Health
,
2003
, “
NIH Consensus Development Conference on Total Knee Replacement
,” http://consensus.nih.gov/2003/2003TotalKneeReplacement117html.htm
3.
Ong
,
K.
,
Lau
,
E.
,
Suggs
,
J.
,
Kurtz
,
S.
, and
Manley
,
M.
,
2010
, “
Risk of Subsequent Revision After Primary and Revision Total Joint Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
468
(11)
, pp.
3070
3076
.10.1007/s11999-010-1399-0
4.
Kaufman
,
K. R.
,
Kovacevic
,
N.
,
Irby
,
S. E.
, and
Colwell
,
C. W.
,
1996
, “
Instrumented Implant for Measuring Tibiofemoral Forces
,”
J. Biomech.
,
29
(5)
, pp.
667
671
.10.1016/0021-9290(95)00124-7
5.
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2007
, “
Design, Calibration and Pre-Clinical Testing of an Instrumented Tibial Tray
,”
J. Biomech.
,
40
(S1)
, pp.
S4
S10
.10.1016/j.jbiomech.2007.02.014
6.
Heinlein
,
B.
,
Kutzner
,
I.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A. M.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2009
, “
ESB Clinical Biomechanics Award 2008: Complete Data of Total Knee Replacement Loading for Level Walking and Stair Climbing Measured In Vivo With a Follow-Up of 6–10 Months
,”
Clin. Biomech.
,
24
(4)
, pp.
315
326
.10.1016/j.clinbiomech.2009.01.011
7.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(11)
, pp.
2164
2173
.10.1016/j.jbiomech.2010.03.046
8.
ACL Solutions
,
2011
, “
Anatomy of the Knee
,” retrieved September 17, http://www.aclsolutions.com/anatomy.php
9.
Hospital for Special Surgery Website
, HSS.edu.,
2010
, retrieved September 17, 2011, http://www.hss.edu/images/articles/tnr-4.jpg
10.
Piezo Systems Inc.
,
2011
, “
Introduction to Piezo Transducers
,” retrieved August 31, 2011, http://www.piezo.com/tech2intropiezotrans.html
11.
Park
,
C.
,
2001
, “
On the Circuit Model of Piezoceramics
,”
J. Intell. Mater. Syst. Struct.
,
12
(7)
, pp.
515
522
.10.1177/10453890122145302
12.
Guan
,
M.
, and
Liao
,
W.
,
2007
, “
Characteristics of Energy Storage Devices in Piezoelectric Energy Harvesting Systems
,”
J. Intell. Mater. Syst. Struct.
,
19
(6)
, pp.
671
680
.10.1177/1045389X07078969
13.
Ottman
,
G.
,
Hofmann
,
H.
,
Bhatt
,
A.
, and
Lesieutre
,
G.
,
2002
, “
Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply
,”
IEEE Trans. Power Electron.
,
17
(5)
, pp.
669
676
.10.1109/TPEL.2002.802194
14.
Tabesh
,
A.
, and
Frechette
,
L.
,
2010
, “
A Low-Power Stand-Alone Adaptive Circuit for Harvesting Energy From a Piezoelectric Micropower Generator
,”
IEEE Trans. Ind. Electron. Control Instrum.
,
57
(3)
, pp.
840
849
.10.1109/TIE.2009.2037648
15.
Vijayaraghavan
,
K.
, and
Rajamani
,
R.
,
2010
, “
Ultra-Low Power Control System for Maximal Energy Harvesting From Short Duration Vibrations
,”
IEEE Trans. Control Syst. Technol.
,
18
(2)
, pp.
252
266
.10.1109/TCST.2009.2018135
16.
Tokuhara
,
Y.
,
Kadoya
,
Y.
,
Nakagawa
,
S.
,
Kobayashi
,
A.
, and
Takaoka
,
K.
,
2004
, “
The Flexion Gap in Normal Knees: An MRI Study
,”
J. Bone Jt. Surg.
,
86-B
(8)
, pp.
1133
1136
.10.1302/0301-620X.86B8.15246
17.
McCrum
,
N.
,
Buckley
,
C.
, and
Bucknall
,
C.
,
1997
,
Principles of Polymer Engineering
, 2nd ed.,
Oxford University Press
,
New York
.
18.
Texas Instruments
,
2010
, SLAS554E–CC430F613x Data Sheet, available at http://www.ti.com/lit/ds/slas554f/slas554f.pdf
19.
Bashirullah
,
R.
,
2010
, “
Wireless Implants
,”
IEEE Microw. Mag.
,
11
(7)
, pp.
S14
S23
.10.1109/MMM.2010.938579
You do not currently have access to this content.