A portable atmospheric pressure resistive barrier plasma (RBP) device is designed, constructed, and characterized for plasma surface treatment procedures applied in biomedical applications. The design and construction aspects of the RBP plasma device are presented including the electrode configuration, electrical, cooling, and gas flow rates. The RBP device can operate in both dc (battery) as well as in standard 60/50 Hz low frequency ac power input. The RBP device can function effectively in both direct and indirect plasma exposure configurations depending on the type of treatment targets. The portable RBP device is characterized for plasma jet exit velocity, plasma temperatures, and reactive nitrogen species (RNS) using laser shadowgraphy, emission spectroscopy, and gas analyzer diagnostics. We have measured the average velocity of the plasma jet to be 150–200 m/s at 1 cm from the probe end. The gas temperature which is equivalent to the rotational (Trot) temperatures of the plasma is measured by simulation fitting the experimental emission spectra. A high-temperature ceramic fiber-insulated-wire thermocouple probe is used to measure the temperatures of the downstream jet after 2 cm where the plasma emission drops. Addition of external cooling unit brought the temperatures of reactive species and other gases close to room temperature. The spatial concentrations of the reactive oxygen species from the plasma jet tip are measured at 5 cm distance from the electrode. The nitric oxide level is measured to be in the range of 500–660 ppm and it drops to ∼100 ppm at 60 cm. The ppm values of nitric oxides after the cooling unit are observed to be at the same order of magnitude as the plasma jet. The preliminary results on the effectiveness of the portable RBP device for bacterial inactivation as well as the effects of indirect exposure of the portable RBP device on monocytic leukemia cancer cells (THP-1) are briefly presented.

References

1.
Mekki
,
M.
,
Durual
,
S.
,
Scherrer
,
S. S.
,
Lammers
,
J.
, and
Wiskott
,
H. W. A.
,
2009
, “
Optimization of Plasma Treatment, Manipulative Variables and Coating Composition for the Controlled Filling and Coating of a Microstructured Reservoir Stent
,”
ASME J. Med. Devices
,
3
(
1
),
011005
.10.1115/1.3081394
2.
Laroussi
,
M.
,
2002
, “
Nonthermal Decontamination of Biological Media by Atmospheric-Pressure Plasmas: Review, Analysis, and Prospects
,”
IEEE Trans. Plasma Sci.
,
30
(
4
), pp.
1409
1415
.10.1109/TPS.2002.804220
3.
Schutze
,
A.
,
Jeong
,
J. Y.
,
Babayan
,
S. E.
,
Park
,
J.
,
Selwyn
,
G. S.
, and
Hicks
,
R. F.
,
1998
, “
The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources
,”
IEEE Trans. Plasma Sci.
,
26
(
6
), pp.
1685
1694
.10.1109/27.747887
4.
Oda
,
T.
,
2003
, “
Non-Thermal Plasma Processing for Environmental Protection: Decomposition of Dilute Vocs in Air
,”
J. Electrostatics
,
57
(
3–4
), pp.
293
311
.10.1016/S0304-3886(02)00179-1
5.
Kim
,
H. H.
,
2004
, “
Nonthermal Plasma Processing for Air-Pollution Control: A Historical Review, Current Issues, and Future Prospects
,”
Plasma Processes Polym.
,
1
(
2
), pp.
91
110
.10.1002/ppap.200400028
6.
Gaunt
,
L. F.
,
Beggs
,
C. B.
, and
Georghiou
,
G. E.
,
2006
, “
Bactericidal Action of the Reactive Species Produced by Gas-Discharge Nonthermal Plasma at Atmospheric Pressure: A Review
,”
IEEE Trans. Plasma Sci.
,
34
(
4
), pp.
1257
1269
.10.1109/TPS.2006.878381
7.
Perni
,
S.
,
Shama
,
G.
, and
Kong
,
M. G.
,
2008
, “
Cold Atmospheric Plasma Disinfection of Cut Fruit Surfaces Contaminated With Migrating Microorganisms
,”
J. Food Protection
,
71
(
8
), pp.
1619
1625
.
8.
Chen
,
H. L.
,
Lee
,
H. M.
,
Chen
,
S. H.
,
Chang
,
M. B.
,
Yu
,
S. J.
, and
Li
,
S. N.
,
2009
, “
Removal of Volatile Organic Compounds by Single-Stage and Two-Stage Plasma Catalysis Systems: A Review of the Performance Enhancement Mechanisms, Current Status, and Suitable Applications
,”
Environ. Sci. Technol.
,
43
(
7
), pp.
2216
2227
.10.1021/es802679b
9.
Desmet
,
T.
,
Morent
,
R.
,
De Geyter
,
N.
,
Leys
,
C.
,
Schacht
,
E.
, and
Dubruel
,
P.
,
2009
, “
Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review
,”
Biomacromolecules
,
10
(
9
), pp.
2351
2378
.10.1021/bm900186s
10.
Stryczewska
,
H. D.
, and
Lekawa
,
A.
,
2009
, “
Applications of Nonthermal Plasma in Biotechnologies
,”
Przeglad Elektrotechniczny
,
85
(
6
), pp.
83
86
.
11.
Yu
,
B. F.
,
Hu
,
Z. B.
,
Liu
,
M.
,
Yang
,
H. L.
,
Kong
,
Q. X.
, and
Liu
,
Y. H.
,
2009
, “
Review of Research on Air-Conditioning Systems and Indoor Air Quality Control for Human Health
,”
Int. J. Refrigeration-Rev. Int. Froid
,
32
(
1
), pp.
3
20
.10.1016/j.ijrefrig.2008.05.004
12.
Cheruthazhekatt
,
S.
,
Cernak
,
M.
,
Slavicek
,
P.
, and
Havel
,
J.
,
2010
, “
Gas Plasmas and Plasma Modified Materials in Medicine
,”
J. Appl. Biomed.
,
8
(
2
), pp.
55
66
.10.2478/v10136-009-0013-9
13.
Skalska
,
K.
,
Miller
,
J. S.
, and
Ledakowicz
,
S.
,
2010
, “
Trends in No(X) Abatement: A Review
,”
Sci. Total Environment
,
408
(
19
), pp.
3976
3989
.10.1016/j.scitotenv.2010.06.001
14.
Heinlin
,
J.
,
Isbary
,
G.
,
Stolz
,
W.
,
Morfill
,
G.
,
Landthaler
,
M.
,
Shimizu
,
T.
,
Steffes
,
B.
,
Nosenko
,
T.
,
Zimmermann
,
J. L.
, and
Karrer
,
S.
,
2011
, “
Plasma Applications in Medicine With a Special Focus on Dermatology
,”
J. Eur. Acad. Dermatol. Venereol.
,
25
(
1
), pp.
1
11
.10.1111/j.1468-3083.2010.03702.x
15.
Misra
,
N. N.
,
Tiwari
,
B. K.
,
Raghavarao
,
K.
, and
Cullen
,
P. J.
,
2011
, “
Nonthermal Plasma Inactivation of Food-Borne Pathogens
,”
Food Eng. Rev.
,
3
(
3–4
), pp.
159
170
.10.1007/s12393-011-9041-9
16.
Knorr
,
D.
,
Froehling
,
A.
,
Jaeger
,
H.
,
Reineke
,
K.
,
Schlueter
,
O.
, and
Schoessler
,
K.
,
2011
, “
Emerging Technologies in Food Processing
,”
Annu. Rev. Food Sci. Technol
.,
2
, pp.
203
235
. 10.1146/annurev.food.102308.124129
17.
Moreau
,
S.
,
Moisan
,
M.
,
Tabrizian
,
M.
,
Barbeau
,
J.
,
Pelletier
,
J.
,
Ricard
,
A.
, and
Yahia
,
L. H.
,
2000
, “
Using the Flowing Afterglow of a Plasma to Inactivate Bacillus Subtilis Spores: Influence of the Operating Conditions
,”
J. Appl. Phys.
,
88
(
2
), pp.
1166
1174
.10.1063/1.373792
18.
Van Poucke
,
G. E.
,
Bravo
,
L. J. B.
, and
Shafer
,
S. L.
,
2004
, “
Target Controlled Infusions: Targeting the Effect Site While Limiting Peak Plasma Concentration
,”
Biomed. Eng. IEEE Trans.
,
51
(
11
), pp.
1869
1875
.10.1109/TBME.2004.827935
19.
Gaunt
,
L. F.
,
Beggs
,
C. B.
, and
Georghiou
,
G. E.
,
2005
, “
Bactericidal Action of the Reactive Species Produced by Gas-Discharge Nonthermal Plasma at Atmospheric Pressure: A Review
,” 4th International Symposium on Nonthermal Medical/Biological Treatments Using Electromagnetic Fields and Ionized Gases (ElectroMed 2005), Portland, OR, May 16–18.
20.
Hayashi
,
N.
,
Tsutsui
,
S.
,
Tomari
,
T.
, and
Weimin
,
G.
,
2008
, “
Sterilization of Medical Equipment Using Oxygen Radicals Produced by Water Vapor RF Plasma
,”
Plasma Sci. IEEE Trans.
,
36
(
4
), pp.
1302
1303
.10.1109/TPS.2008.924453
21.
Kolb
,
J. F.
,
Mohamed
,
A.
a.
H.
,
Price
,
R. O.
,
Swanson
,
R. J.
,
Bowman
,
A.
,
Chiavarini
,
R. L.
,
Stacey
,
M.
, and
Schoenbach
,
K. H.
,
2008
, “
Cold Atmospheric Pressure Air Plasma Jet for Medical Applications
,”
Appl. Phys. Lett.
,
92
(
24
), pp.
241501–241501-3
.10.1063/1.2940325
22.
Chu
,
P. K.
,
Yukimura
,
K.
, and
Tian
,
X.
,
2009
, “
Special Issue on Plasma-Based Surface Modification and Treatment Technologies
,”
Plasma Sci. IEEE Trans.
,
37
(
7
), pp.
1121
1122
.10.1109/TPS.2009.2023549
23.
Karakas
,
E.
,
Munyanyi
,
A.
,
Greene
,
L.
, and
Laroussi
,
M.
,
2010
, “
Destruction of Alpha-Synuclein Based Amyloid Fibrils by a Low Temperature Plasma Jet
,”
Appl. Phys. Lett.
,
97
(
14
), pp.
143702-143702-3
.10.1063/1.3499277
24.
Bussiahn
,
R.
,
Brandenburg
,
R.
,
Gerling
,
T.
,
Kindel
,
E.
,
Lange
,
H.
,
Lembke
,
N.
,
Weltmann
,
K. D.
,
Von Woedtke
,
T.
, and
Kocher
,
T.
,
2010
, “
The Hairline Plasma: An Intermittent Negative Dc-Corona Discharge at Atmospheric Pressure for Plasma Medical Applications
,”
Appl. Phys. Lett.
,
96
(
14
), pp.
143701-143701-3
.10.1063/1.3380811
25.
Xu
,
Y.
,
Fei
,
Z.
,
Shasha
,
Z.
,
Xinpei
,
L.
,
Guangyuan
,
H.
,
Zilan
,
X.
,
Qing
,
X.
,
Qiangqiang
,
Z.
,
Pengyi
,
D.
,
Jianguo
,
H.
, and
Guangxiao
,
Y.
,
2010
, “
On the Mechanism of Plasma Inducing Cell Apoptosis
,”
Plasma Sci. IEEE Trans.
,
38
(
9
), pp.
2451
2457
.10.1109/TPS.2010.2056393
26.
Yardimci
,
O.
, and
Setlow
,
P.
,
2010
, “
Plasma Sterilization: Opportunities and Microbial Assessment Strategies in Medical Device Manufacturing
,”
Plasma Sci. IEEE Trans.
,
38
(
4
), pp.
973
981
.10.1109/TPS.2010.2041674
27.
Johnson
,
V. S.
,
Weidong
,
Z.
,
Wang
,
R.
,
Lo Re
,
J. J.
,
Sivaram
,
S.
,
Mahoney
,
J.
, and
Lopez
,
J. L.
,
2011
, “
A Cold Atmospheric-Pressure Helium Plasma Generated in Flexible Tubing
,”
Plasma Sci. IEEE Trans.
,
39
(
11
), pp.
2360
2361
.10.1109/TPS.2011.2160737
28.
Loeb
,
L. B.
,
1948
, “
Recent Developments in Analysis of the Mechanisms of Positive and Negative Coronas in Air
,”
J. Appl. Phys.
,
19
(
10
), pp.
882
897
.10.1063/1.1697894
29.
Nunez
,
C. M.
,
Ramsey
,
G. H.
,
Ponder
,
W. H.
,
Abbott
,
J. H.
,
Hamel
,
L. E.
, and
Kariher
,
P. H.
,
1993
, “
Corona Destruction—An Innovative Control Technology for Vocs and Air Toxics
,”
J. Air & Waste Management Assoc.
,
43
(
2
), pp.
242
247
.10.1080/1073161X.1993.10467131
30.
Strobel
,
J. M.
,
Strobel
,
M.
,
Lyons
,
C. S.
,
Dunatov
,
C.
, and
Perron
,
S. J.
,
1991
, “
Aging of Air-Corona-Treated Polypropylene Film
,”
J. Adhes. Sci. Technol.
,
5
(
2
), pp.
119
130
.10.1163/156856191X00080
31.
Thiyagarajan
,
M.
,
Alexeff
,
I.
,
Parameswaran
,
S.
, and
Beebe
,
S.
,
2005
, “
Atmospheric Pressure Resistive Barrier Cold Plasma for Biological Decontamination
,”
IEEE Trans. Plasma Sci.
,
33
(
2
), pp.
322
323
.10.1109/TPS.2005.845938
32.
Gibalov
,
V. I.
, and
Pietsch
,
G. J.
,
2000
, “
The Development of Dielectric Barrier Discharges in Gas Gaps and on Surfaces
,”
J. Phys. D
,
33
(
20
), pp.
2618
2636
.10.1088/0022-3727/33/20/315
33.
Cui
,
N. Y.
, and
Brown
,
N. M. D.
,
2002
, “
Modification of the Surface Properties of a Polypropylene (Pp) Film Using an Air Dielectric Barrier Discharge Plasma
,”
Appl. Surf. Sci.
,
189
(
1–2
), pp.
31
38
.10.1016/S0169-4332(01)01035-2
34.
Borcia
,
G.
,
Anderson
,
C. A.
, and
Brown
,
N. M. D.
,
2003
, “
Dielectric Barrier Discharge for Surface Treatment: Application to Selected Polymers in Film and Fibre Form
,”
Plasma Sources Sci. Technol.
,
12
(
3
), pp.
335
344
.10.1088/0963-0252/12/3/306
35.
Lu
,
X. P.
, and
Laroussi
,
M.
,
2005
, “
Optimization of Ultraviolet Emission and Chemical Species Generation From a Pulsed Dielectric Barrier Discharge at Atmospheric Pressure
,”
J. Appl. Phys.
,
98
(
2
),
023301
.10.1063/1.1980530
36.
Tsai
,
P. P.
,
Roth
,
J. R.
, and
Chen
,
W. W.
,
2005
, “
Strength, Surface Energy, and Ageing of Meltblown and Electrospun Nylon and Polyurethane (Pu) Fabrics Treated by a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP™)
,”
Textile Res. J.
,
75
(
12
), pp.
819
825
.10.1177/0040517505057526
37.
Fridman
,
G.
,
Peddinghaus
,
M.
,
Ayan
,
H.
,
Fridman
,
A.
,
Balasubramanian
,
M.
,
Gutsol
,
A.
,
Brooks
,
A.
, and
Friedman
,
G.
,
2006
, “
Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air
,”
Plasma Chem. Plasma Proc.
,
26
(
4
), pp.
425
442
.10.1007/s11090-006-9024-4
38.
Kovacic
,
N.
,
Meyer
,
G. A.
,
Liu
,
K. L.
, and
Barnes
,
R. M.
,
1985
, “
Diagnostics in an Air Inductively Coupled Plasma
,”
Spectrochim. Acta Part B-Atomic Spectrosc.
,
40
(
7
), pp.
943
957
.10.1016/0584-8547(85)80065-3
39.
Akhtar
,
K.
,
Scharer
,
J. E.
,
Tysk
,
S. M.
, and
Denning
,
M.
,
2003
, “
Radio-Frequency Sustainment of Laser Initiated, High-Pressure Air Constituent Plasmas
,” Radio Frequency Power in Plasmas:
15th Topical Conference on Radio Frequency Power in Plasmas
, Moran, WY, May 19–21, pp. 411–41410.1063/1.1638068.
40.
Stoffels
,
E.
,
Flikweert
,
A. J.
,
Stoffels
,
W. W.
, and
Kroesen
,
G. M. W.
,
2002
, “
Plasma Needle: A Non-Destructive Atmospheric Plasma Source for Fine Surface Treatment of (Bio)Materials
,”
Plasma Sources Sci. Technol.
,
11
(
4
), pp.
383
388
.10.1088/0963-0252/11/4/304
41.
Sakiyama
,
Y.
, and
Graves
,
D. B.
,
2006
, “
Corona-Glow Transition in the Atmospheric Pressure RF-Excited Plasma Needle
,”
J. Phys. D
,
39
(
16
), pp.
3644
3652
.10.1088/0022-3727/39/16/018
42.
Stoffels
,
E.
,
Gonzalvo
,
Y. A.
,
Whitmore
,
T. D.
,
Seymour
,
D. L.
, and
Rees
,
J. A.
,
2006
, “
A Plasma Needle Generates Nitric Oxide
,”
Plasma Sources Sci. Technol.
,
15
(
3
), pp.
501
506
.10.1088/0963-0252/15/3/028
43.
Lu
,
X.
,
Xiong
,
Z.
,
Zhao
,
F.
,
Xian
,
Y.
,
Xiong
,
Q.
,
Gong
,
W.
,
Zou
,
C.
,
Jiang
,
Z.
, and
Pan
,
Y.
,
2009
, “
A Simple Atmospheric Pressure Room-Temperature Air Plasma Needle Device for Biomedical Applications
,”
Appl. Phys. Lett.
,
95
(
18
),
181501
.10.1063/1.3258071
44.
Li
,
X. C.
,
Yuan
,
N.
,
Jia
,
P. Y.
, and
Chen
,
J. Y.
,
2010
, “
A Plasma Needle for Generating Homogeneous Discharge in Atmospheric Pressure Air
,”
Phys. Plasmas
,
17
(
9
),
093504
.10.1063/1.3476899
45.
Kousal
,
J.
,
Klima
,
M.
,
Janca
,
J.
,
Kapicka
,
V.
,
Slavicek
,
P.
,
Brablec
,
A.
, and
Sulovsky
,
P.
,
2000
, “
Plasma Pencil—A New Small-Scale Source for Atmospheric Surface Modifications
,”
Czech. J. Phys.
,
50
, pp.
409
413
.10.1007/BF03165919
46.
Janca
,
J.
,
Zajickova
,
L.
,
Klima
,
M.
, and
Slavicek
,
P.
,
2001
, “
Diagnostics and Application of the High Frequency Plasma Pencil
,”
Plasma Chem. Plasma Proc.
,
21
(
4
), pp.
565
579
.10.1023/A:1012051102101
47.
Laroussi
,
M.
,
Tendero
,
C.
,
Lu
,
X.
,
Alla
,
S.
, and
Hynes
,
W. L.
,
2006
, “
Inactivation of Bacteria by the Plasma Pencil
,”
Plasma Processes and Polymers
,
3
(
6–7
), pp.
470
473
.10.1002/ppap.200600005
48.
Laroussi
,
M.
,
Hynes
,
W.
,
Akan
,
T.
,
Lu
,
X. P.
, and
Tendero
,
C.
,
2008
, “
The Plasma Pencil: A Source of Hypersonic Cold Plasma Bullets for Biomedical Applications
,”
IEEE Trans. Plasma Sci.
,
36
(
4
), pp.
1298
1299
.10.1109/TPS.2008.922432
49.
Thiyagarajan
,
M.
, and
Alexeff
,
I.
,
2003
, “
A Dual Mode—Steady State Atmospheric Pressure Nonthermal Resistive Barrier Plasma Discharge
,” 56th Gaseous Electronics Conference, American Physical Society, San Francisco, CA, October 21–24.
50.
Thiyagarajan
,
M.
,
Alexeff
,
I.
,
Parameswaran
,
S.
, and
Beebe
,
S.
,
2004
, “
Ambient Pressure Resistive Barrier Cold Plasma Discharge for Biological and Environmental Applications
,” 31st IEEE International Conference on Plasma Science (
ICOPS 2004
), Baltimore, MD, June 28–July 1.10.1109/PLASMA.2004.1339777
51.
Thiyagarajan
,
M.
, and
Scharer
,
J. E.
,
2008
, “
Experimental Investigation of 193-nm Laser Breakdown in Air
,”
IEEE Trans. Plasma Sci.
,
36
(
5
), pp.
2512
2521
.10.1109/TPS.2008.2004259
52.
Thiyagarajan
,
M.
, and
Scharer
,
J.
,
2008
, “
Experimental Investigation of Ultraviolet Laser Induced Plasma Density and Temperature Evolution in Air
,”
J. Appl. Phys.
,
104
(
1
),
013303
.10.1063/1.2952540
53.
Laux
,
C. O.
,
Spence
,
T. G.
,
Kruger
,
C. H.
, and
Zare
,
R. N.
,
2003
, “
Optical Diagnostics of Atmospheric Pressure Air Plasmas
,”
Plasma Sources Sci. Technol.
,
12
(
2
), pp.
125
138
.10.1088/0963-0252/12/2/301
54.
Thiyagarajan
,
M.
, and
Waldbeser
,
L.
,
2012
, “
Portable Plasma Medical Device for Infection Treatment
,”
Health Technol. Informatics
,
173
(
1
), p.
518
.10.3233/978-1-61499-022-2-518
55.
Thiyagarajan
,
M.
,
2011
, “
Portable Plasma Medical Device for Infection Treatment and Wound Healing
,” ASME Emerging Technologies' 6th Frontiers in Biomedical Devices Conference & Exhibition, Irvine, CA, September 26–27.
56.
Thiyagarajan
,
M.
, and
Waldbeser
,
L. S.
,
2011
, “
Portable Plasma Torch on E. coli, S. aureus, N. meningitidis and Other Clinical Isolates
,” IEEE International Conference on Plasma Science (
ICOPS 2011
), Chicago, IL, June 26–30.10.1109/PLASMA.2011.5993271
57.
Vidal
,
G.
,
Thiyagarajan
,
M.
, and
Pam
,
H.
,
2011
, “
Cold Plasma Inactivation of E. coli and S. aureus on Solid Surfaces for Infection Treatment
,” 2011 SACNAS National Conference, San Jose, CA, October 27–30.
58.
Thiyagarajan
,
M.
,
Waldbeser
,
L.
, and
Whitmill
,
A.
,
2012
, “
Thp-1 Leukemia Cancer Treatment Using a Portable Plasma Device
,”
Medicine Meets Virtual Reality 19
(Studies in Health Technology and Informatics), Vol.
173
, pp.
515
517
.10.3233/978-1-61499-022-2-515
59.
Thiyagarajan
,
M.
,
Waldbeser
,
L. S.
, and
Whitmill
,
A.
,
2011
, “
Treatment of Cancer Cells Using a Pulsed Power Plasma Source
,” 18th IEEE International Pulsed Power Conference, Chicago, IL, June 19–23, Poster No. 3P-41.
60.
Thiyagarajan
,
M.
,
Waldbeser
,
L. S.
, and
Whitmill
,
A.
,
2011
, “
Effective Non-Thermal Plasma Induction of Apoptosis in Leukemia Cancer Cells
,” 38th International Conference on Plasma Science and 24th Symposium on Fusion Engineering, Chicago, IL, June 26–30, Poster No. IP1N-36.
61.
Thiyagarajan
,
M.
,
2011
, “
Portable Plasma Biomedical Device for Cancer Treatment
,” ASME Emerging Technologies' 6th Frontiers in Biomedical Devices Conference & Exhibition, Irvine, CA, September 26–27.
62.
Thiyagarajan
,
M.
,
2011
, “
Effects of Cold Plasma and Treatment of Leukemia Cancer Cells
,” International Conference on Medical Physics and Biomedical Engineering (ICMPBE 2011), Paris, August 24–26.
You do not currently have access to this content.