Recent advances in radio frequency (RF) sensor systems provide new opportunities to wirelessly collect data from inside the body. “Smart implants” instrumented with sensors have been used as research tools for decades, but only recently have implantable sensors become small enough and robust enough to be used in daily clinical practice. In orthopedic surgery, implants provide a vehicle onto which small RF sensors can be mounted to gather data for diagnostics. However, the sensors must function in a challenging environment which requires long term functionality under demanding physical and mechanical conditions. The purpose of this study was to parametrically test low frequency RF systems under simulated in vivo conditions to determine feasibility of sensor integration into orthopedic applications. Three low frequency RF systems were tested in several clinically relevant scenarios in vitro to characterize (1) strategies for maximizing communication range, (2) physical robustness, and (3) mechanical performance. Systems were tested in air, saline, soft tissue, bone, and in proximity to metal. Hermeticity was assessed during a 208 week period. Effects of γ-irradiation and repeated steam sterilized were measured. Strain at failure was measured by mechanical testing of various packaging configurations. All systems were capable of greater than 20 cm read range under ideal conditions. Saline, soft tissue, and bone had minimal effect on signal transmission, but read range was sensitive to the proximity of stainless steel. The electronics were tolerant of steam sterilization but not of γ-irradiation. Polymer encapsulation is robust enough for many orthopedic applications, but ceramic encapsulated sensors need to be optimized for weight-bearing applications to avoid brittle failure. Although sensor packaging remains a challenge, the technology exists to incorporate passive wireless implantable sensors into orthopedic daily practice.

References

1.
Waugh
,
T.
,
1966
, “
Intravital Measurements During Instrumental Correction of Idiopathic Scoliosis
,”
Acta. Orthop. Scan.
,
93
(
S
), pp.
58
75
.
2.
Nachamson
,
A.
, and
Elfstrom
,
G.
,
1971
, “
Intravital Wireless Telemetry of Axial Forces in Harrington Distraction Rods in Patients With Idiopathic Scoliosis
,”
J. Bone. Joint. Surg.
,
53-A
(
3
), pp.
445
464
.
3.
Elfstrom
,
G.
, and
Nachemson
,
A.
,
1973
, “
Telemetry Recordings of Forces in the Harrington Distraction Rod: A Method for Increasing Safety in the Operative Treatment of Scoliosis Patients
,”
Clin. Orthop. Rel. Res.
,
93
, pp.
158
172
.10.1097/00003086-197306000-00016
4.
Cochran
,
G.
,
1972
, “
Implantation of Strain Gages on Bone In Vivo
,”
J. Biomech.
,
5
, pp.
119
23
.10.1016/0021-9290(72)90024-3
5.
Carlson
,
C.
,
Mann
,
R.
, and
Harris
,
W.
,
1974
, “
A Radio Telemetry Device for Monitoring Cartilage Surface Pressures in the Human Hip
,”
IEEE Trans. Biomed. Eng.
,
21
(
4
), pp.
257
264
.10.1109/TBME.1974.324311
6.
Fonseca
,
J.
, and
Silva
,
O.
,
1975
, “
Measurements of Stress and Strain in Live Bone by Electrical Strain Gage Method
,”
Rev. Bras. Pesqui. Med. Biol.
,
8
(
5–6
), pp.
469
474
.
7.
Rydell
,
N.
,
1966
, “
Forces Acting On the Femoral Head-Prosthesis: A Study On Strain Gauge Supplied Prostheses in Living Persons
,”
Acta. Orthop. Scand.
,
37
(
Suppl. 88
), pp.
1
132
.
8.
Burny
,
F.
,
1983
, “
Strain Gauge Measurement of Fracture Healing
,”
A.
Brooker
,
W.
Cooney
, and
E.
Chao
, eds.,
Principles of External Fixation
,
Williams and Wilkins
,
Baltimore
, MD, pp.
71
82
.
9.
Finkenzeller
,
K.
,
2003
,
RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification
,
John Wiley & Sons
,
Hoboken
.
10.
Klair
,
D. K.
,
Chin
,
K. W.
, and
Raad
,
R.
,
2010
, “
A Survey and Tutorial of RFID Anti-Collision Protocols
,”
IEEE Communication Surveys & Tutorials
,
12
(
3
), pp.
400
421
.10.1109/SURV.2010.031810.00037
11.
Young
,
W.
, and
Budynas
,
R.
,
2002
,
Roark’s Formulas for Stress and Strain
, 7th ed.,
McGraw-Hill
,
New York
.
12.
Frocht
,
M.
,
1948
,
Photoelasticity
, Vol. 2,
John Wiley & Sons
,
New York
.
13.
Davy
,
D. T.
,
Kotzar
,
G. M.
,
Grown
,
R. H.
,
Heiple
,
K. G.
,
Goldberg
,
V. M.
,
Berilla
,
J.
, and
Burstein
,
A.
,
1988
, “
Telemetric Force Measurements Across the Hip After Total Arthroplasty
,”
J. Bone Joint Surg.
,
70-A
(
1
), pp.
45
50
.
14.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
,
1993
, “
Hip Joint Loading During Walking and Running Measured in Two Patients
,”
J. Biomech.
,
26
(
8
), pp.
969
990
.10.1016/0021-9290(93)90058-M
15.
Bergmann
,
G.
,
Beuretxbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
D. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
, pp.
859
871
.10.1016/S0021-9290(01)00040-9
16.
Otake
,
Y.
,
Suzuki
,
N.
,
Hattori
,
A.
,
Miki
,
H.
,
Yamamura
,
M.
,
Yonenobu
,
K.
,
Ochi
,
T.
, and
Sugano
,
N.
,
2007
, “
System for Intraoperative Evaluation of Soft-Tissue-Generated Forces During Total Hip Arthroplasty by Measurement of the Pressure Distribution in Artificial Joints
,”
Comput. Aided Surg.
,
12
(
1
), pp.
53
59
.
17.
Morris
,
B.
,
D’Lima
,
D.
,
Slamin
,
J.
,
Kovacevic
,
N.
,
Arms
,
S. W.
,
Townsend
,
C. P.
, and
Colwell
,
C. W.
,
2001
, “
e-Knee: Evolution of the Electronic Knee Prosthesis. Telemetry Technology Development
,”
J. Bone Joint Surg.
,
83-A
(
Suppl. 2, Part 1
), pp.
62
66
.
18.
Taylor
,
S.
, and
Walker
,
P.
,
2001
, “
Forces and Moments Telemetered From Two Distal Femoral Replacements During Various Activities
,”
J. Biomech.
,
34
, pp.
839
848
.10.1016/S0021-9290(01)00042-2
19.
Heinlein
,
B.
,
Kutzner
,
I.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A. M.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2009
, “
ESB Clinical Biomechanics Award 2008: Complete Data of Total Knee Replacement Loading for Level Walking and Stair Climbing Measured In Vivo With a Follow-Up of 6-10 Months
,”
Clin. Biomech.
,
24
(
4
), pp.
315
326
.10.1016/j.clinbiomech.2009.01.011
20.
D’Lima
,
D.
,
Steklov
,
N.
,
Patil
,
S.
, and
Colwell
,
C.
,
2008
, “
The Mark Coventry Award: In Vivo Knee Forces During Recreation and Exercise After Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
466
(
11
), pp.
2605
2611
.10.1007/s11999-008-0345-x
21.
Westerhoff
,
P.
,
Graichen
,
F.
,
Bender
,
A.
, Halder, A., Beier, A., Rohlmann, A., and Bergmann, G.,
2009
, “
In Vivo Measurement of Shoulder Joint Loads During Activities of Daily Living
,”
J. Biomech.
,
42
(
12
), pp.
1840
1849
.10.1016/j.jbiomech.2009.05.035
22.
Ledet
,
E. H.
,
Tymeson
,
M. P.
,
DiRisio
,
D. J.
,
Cohen
,
B.
, and
Uhl
,
R. L.
,
2005
, “
Direct Real Time Measurement of In Vivo Forces in the Lumbar Spine
,”
Spine J.
,
5
(
1
), pp.
85
94
.10.1016/j.spinee.2004.06.017
23.
Ledet
,
E. H.
,
Sachs
,
B. L.
,
Brunski
,
J. B.
,
Gatto
,
C. E.
, and
Donzelli
,
P. S.
,
2000
, “
Real Time In Vivo Loading in the Lumbar Spine. Part 1: Interbody Implant—Load Cell Design and Preliminary Results
,”
Spine
,
25
(
20
), pp.
2595
2600
.10.1097/00007632-200010150-00009
24.
Rohlmann
,
A.
,
Bergmann
,
G.
,
Graichen
,
F.
, and
Mayer
,
H. M.
,
1995
, “
Telemetrized Load Measurement Using Instrumented Spinal Internal Fixators in a Patient With Degenerative Instability
,”
Spine
,
20
(
24
), pp.
2683
2689
.10.1097/00007632-199512150-00009
25.
Rohlmann
,
A.
,
Graichen
,
F.
,
Kayser
,
R.
,
Bender
,
A.
, and
Bergmann
,
G.
,
2008
, “
Loads On a Telemeterized Vertebral Body Replacement Measured in Two Patients
,”
Spine
,
33
(
11
), pp.
1170
1179
.10.1097/BRS.0b013e3181722d52
26.
Schneider
,
E.
,
Michel
,
M. C.
,
Genge
,
M.
,
Zuber
,
K.
,
Ganz
,
R.
, and
Perren
,
S. M.
,
2001
, “
Loads Acting in an Intramedullary Nail During Fracture Healing in the Human Femur
,”
J. Biomech.
,
34
, pp.
849
857
.10.1016/S0021-9290(01)00037-9
27.
Lanyon
,
L.
,
Hampson
,
W.
,
Goodship
,
A.
, and
Shah
,
J.
,
1975
, “
Bone Deformation Recorded In Vivo From Strain Gauges Attached to the Human Tibial Shaft
,”
Acta. Orthop. Scand.
,
46
(
2
), pp.
256
268
.10.3109/17453677508989216
28.
Brown
,
R.
,
Burstein
,
A.
, and
Frankel
,
V.
,
1982
, “
Telemetering In Vivo Loads From Nail Plate Implants
,”
J. Biomech.
,
15
(
11
), pp.
815
823
.10.1016/0021-9290(82)90046-X
29.
Rohlmann
,
A.
,
Bergmann
,
G.
, and
Graichen
,
F.
,
1994
, “
A Spinal Fixation Device for In Vivo Load Measurement
,”
J. Biomech.
,
27
(
7
), pp.
961
967
.10.1016/0021-9290(94)90268-2
30.
Burny
,
F.
,
Donkerwolcke
,
M.
,
Moulart
,
F.
,
Bourgois
,
R.
,
Puers
,
R.
,
Van Schuylenbergh
,
K.
,
Barbosa
,
M.
,
Paiva
,
O.
,
Rodes
,
F.
,
Begueret
,
J. B.
, and
Lawes
,
P.
,
2000
, “
Concept, Design, and Fabrication of Smart Orthopaedic Implants
,”
Med. Eng. Phys.
,
22
, pp.
469
479
.10.1016/S1350-4533(00)00062-X
31.
English
,
T.
, and
Kilvington
,
M.
,
1979
, “
In Vivo Records of Hip Loads Using a Femoral Implant With Telemetric Output
,”
J. Biomed. Eng.
,
1
(
2
), pp.
111
115
.10.1016/0141-5425(79)90066-9
32.
Carlson.
C.
,
Mann
,
R.
, and
Harris
,
W.
,
1974
, “
A Radio Telemetry Device for Monitoring Cartilage Surface Pressures in the Human Hip
,”
IEEE Trans. Biomed. Eng.
,
21
(
4
), pp.
257
264
.10.1109/TBME.1974.324311
33.
Ko
,
W.
, and
Liang
,
S.
,
1980
, “
RF-Powered Cage System for Implant Biotelemetry
,”
IEEE Trans. Biomed. Eng.
,
27
(
8
), pp.
460
467
.10.1109/TBME.1980.326755
34.
Bergmann
,
G.
,
Graichen
,
F.
,
Siraky
,
J.
,
Jendrzynski
,
J.
, and
Rohlmann
,
A.
,
1988
, “
Multichannel Strain Gauge Telemetry System for Orthopaedic Implants
,”
J. Biomech.
,
21
(
2
), pp.
169
176
.10.1016/0021-9290(88)90009-7
35.
Ledet
,
E. H.
,
D’Lima
,
D.
,
Westerhoff
,
P.
,
Szivek
,
J. A.
,
Wachs
,
R. A.
, and
Bergmann
,
G.
,
2012
, “
Implantable Sensor Technology: From Research to Clinical Practice
,”
J. Am. Acad. Orthop. Surg.
,
20
, pp.
383
392
.10.5435/JAAOS-20-06-383
36.
Dezettel
,
L.
,
1960
,
The Grid Dip Meter
,
Electronics World
, pp.
50
51
.
37.
Halliday
,
D.
,
Resnick
,
R.
, and
Walker
,
J.
,
2011
,
Fundamentals of Physics Extended
, 9th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
38.
Kaiser
,
K.
,
2005
,
Electromagnetic Compatibility Handbook
,
CRC Press
,
Boca Raton
, FL.
39.
Dimitriejev
,
S.
,
Golubovic
,
S.
,
Zupac
,
D.
,
Pejovic
,
M.
, and
Stojandinovic
,
N.
,
1989
, “
Analysis of Gamma-Radiation Induced Instability Mechanisms in CMOS Transistors
,”
Solid-State Electronics
,
32
(
5
), pp.
349
353
.10.1016/0038-1101(89)90122-6
40.
Holmes-Siedle
,
A.
, and
Adams
,
L.
,
2002
,
Handbook of Radiation Effects
, 2nd ed.,
Oxford University Press
,
Oxford
, UK.
41.
Ellis
,
T.
,
Bourgeault
,
C.
, and
Kyle
,
R.
,
2001
, “
Screw Position Affects Dynamic Compression Plate Strain in an In Vitro Fracture Model
,”
J. Orthop. Trauma
,
15
(
5
), pp.
333
337
.10.1097/00005131-200106000-00005
42.
Painter
,
P.
, and
Coleman
,
M.
,
1997
,
Fundamentals of Polymer Science
, 2nd ed.,
CRC Press
,
New York
.
43.
Ko
,
W.
, and
Spear
,
T.
,
1985
. “
Packaging of Implantable Electronics: Past, Present, and Future Developments
”,
W.
Ko
,
J.
Mugica
, and
A.
Ripart
, eds.,
Implantable Sensors for Closed-Loop Prosthetic Systems
,
Future Publishing
,
Mount Kisco
, pp.
259
304
.
44.
Levine
,
M.
,
Aida
,
B.
,
Mandl
,
K.
,
Kohane
,
I.
, and
Halamka
,
J.
,
2007
, “
What are the Benefits and Risks of Fitting Patients With Radiofrequency Identification Devices?
PLoS. Med.
,
4
(
11
), pp.
1709
1711
.10.1371/journal.pmed.0040322
45.
U.S. Department of Health and Human Services, Food and Drug Administration Center for Devices and Radiological Health
,
2004
, “Guidance for Industry and FDA Staff. Class II Special Controls Guidance Document: Implantable Radiofrequency Transponder System for Patient Identification and Health Information.”
46.
U.S. Department of Health and Human Services, Food and Drug Administration Center for Devices and Radiological Health
,
2006
, “Guidance for Industry and Food and Drug Administration; Class II Special Controls Guidance Document: Implantable Intra-Aneurysm Pressure Measurement System,” Docket No. 2005D-0505.
You do not currently have access to this content.