Stents are metal scaffold devices used to maintain lumen and restore blood flow of diseased artery. Despite they brought care of coronary diseases to a new level of efficacy, problem of stent fracture remains unclear even after global needs reached number of 5 × 106 devices yearly. For projected work-life of 10 years, rate of fracture occurrence in stents varies from 5% up to 25% for different designs. Analysis of such miniature devices and long-term events in realistic in vivo conditions remains impossible while experimental in vitro measurements provide limited results consuming much time and expensive equipment. The principal aim of this study was to propose procedure for numerical estimation of coronary stents durability assuming the hyperphysiological pulsatile pressure conditions. The hypothesis was whether the stent durability would be achieved safely for the projected work-life of 10 yr? The procedure was carried out within three phases: (a) initial fatigue analysis based on S-N approach; (b) fatigue lifetime assessment based on fatigue crack growth simulation using Paris power law, and (c) safe-operation, i.e., no-fatigue failure (based on Kitagawa–Takahashi diagram) as well as immediate predictions of the fracture event in the stent. For considered generic stent design, results showed that the stent durability would be achieved safely. Since special diagrams were used, the fatigue risk assessment was clearer compared to the conventional fatigue lifetimes. Moreover, it was found that crack growth was stable for both small and large scale sizes of the crack. Besides the fact that the presented procedure was shown as suitable for numerical assessment of the generic stent durability under hyperphysiological pulsatile pressure conditions, it was concluded that it might be applied for any other design as well as loading conditions. Moreover, it could be efficiently combined with experimental procedures during the process of the stent design validation to reduce manufacturing and testing costs.

References

1.
Kottke
,
T. E.
,
Faith
,
D. A.
,
Jordan
,
C. O.
,
Pronk
,
N. P.
,
Thomas
,
R. J.
, and
Capewell
,
S.
,
2008
, “
The Comparative Effectiveness of Heart Disease Prevention and Treatment Strategies
,”
Am. J. Prev. Med.
,
36
(
1
), pp.
82
88
.10.1016/j.amepre.2008.09.010
2.
Rosamond
,
W.
,
Flegal
,
K.
,
Furie
,
K.
,
Go
,
A.
,
Greenlund
,
K.
,
Haase
,
N.
,
Hailpern
,
S. M.
,
Ho
,
M.
,
Howard
,
V.
,
Kissela
,
B.
,
Kittner
,
S.
,
Lloyd-Jones
,
D.
,
McDermott
,
M.
,
Meigs
,
J.
,
Moy
,
C.
,
Nichol
,
G.
,
O'Donnell
,
C.
,
Roger
,
V.
,
Sorlie
,
P.
,
Steinberger
,
J.
,
Thom
,
T.
,
Wilson
,
M.
, and
Hong
,
Y.
,
2008
, “
Heart Disease and Stroke Statistics Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,”
Circulation
,
117
(4), pp.
e25
e146
.10.1161/CIRCULATIONAHA.107.187998
3.
Nabel
,
E. G.
, and
Braunwald
,
E.
,
2012
, “
Tale of Coronary Artery Disease and Myocardial Infarction
,”
N. Engl. J. Med.
,
366
(1), pp.
54
63
.10.1056/NEJMra1112570
4.
Serruys
,
P. W.
,
Kutryk
,
M. J. B.
, and
Ong
,
A. T. L.
,
2006
, “
Coronary-Artery Stents
,”
N. Engl. J. Med.
,
354
(
6
), pp.
483
495
.10.1056/NEJMra051091
5.
Laslett
,
L. J.
,
Alagona
,
P.
, Jr.
,
Clark
, III,
B. A.
,
Drozda
,
J. P.
, Jr.
,
Saldivar
,
F.
,
Wilson
,
S. R.
,
Poe
,
C.
, and
Hart
,
M.
,
2006
, “
The Worldwide Environment of Cardiovascular Disease: Prevalence, Diagnosis, Therapy, and Policy Issues: A Report From the American College of Cardiology
,”
J. Am. Coll. Cardiol.
,
60
(
25
), pp.
S1
S49
.10.1016/j.jacc.2012.11.002
6.
Iwasaki
,
K.
,
Kishigami
,
S.
,
Arai
,
J.
,
Ohba
,
T.
,
Zhu
,
X.
,
Yamamoto
,
T.
,
Hikichi
,
Y.
, and
Umezu
,
M.
,
2013
, “
Flexibility and Stent Fracture Potentials Against Cyclically Bending Coronary Artery Motions: Comparison Between 2-Link and 3-Link DESs
,”
Am. J. Cardiol.
,
111
(
7
), pp.
26B
.10.1016/j.amjcard.2013.01.355
7.
Edelman
,
E. R.
, and
Rogers
,
C.
,
1998
, “
Pathobiologic Responses to Stenting
,”
Am. J. Cardiol.
,
81
(7S1), pp.
4E
6E
.10.1016/S0002-9149(98)00189-1
8.
Gourisankaran
,
V.
, and
Sharma
,
M. G.
,
2000
, “
The Finite-Element Analysis of Stresses in Atherosclerotic Arteries During Balloon Angioplasty
,”
Crit. Rev. Biomed. Eng.
,
28
(1–2), pp.
47
51
.10.1615/CritRevBiomedEng.v28.i12.90
9.
De Beule
,
M.
,
Van Impe
,
R.
,
Verhegghe
,
B.
,
Segers
,
P.
, and
Verdonck
,
P.
,
2006
, “
Finite Element Analysis and Stent Design: Reduction of Dogboning
,”
Technol. Health Care
,
14
(4–5), pp.
233
241
.
10.
Garvaso
,
F.
,
Capelli
,
C.
,
Petrini
,
L.
,
Lattanzio
,
S.
,
Di Virgilio
,
L.
, and
Migliavacca
,
F.
,
2008
, “
On the Effects of Different Strategies in Modelling Balloon-Expandable Stenting by Means of Finite Element Method
,”
J. Biomech.
,
41
(6), pp.
1206
1212
.10.1016/j.jbiomech.2008.01.027
11.
Rebelo
,
N.
,
Radford
,
R.
,
Zipse
,
A.
,
Schlun
,
M.
, and
Dreher
,
G.
,
2011
, “
On Modeling Assumptions in Finite Element Analysis of Stents
,”
ASME J. Med. Devices
,
5
(
3
), p.
031007
.10.1115/1.4004654
12.
Wang
,
W. Q.
,
Liang
,
D. K.
,
Yang
,
D. Z.
, and
Qi
,
M.
,
2006
, “
Analysis of the Transient Expansion Behavior and Design Optimization of Coronary Stents by Finite Element Method
,”
J. Biomech.
,
39
(1), pp.
21
32
.10.1016/j.jbiomech.2004.11.003
13.
Bock
,
D.
,
Iannaccone
,
F.
,
De Santis
,
G.
,
De Beule
,
M.
,
Mortier
,
P.
,
Verhegghe
,
B.
, and
Segers
,
P.
,
2012
, “
Our Capricious Vessels: The Influence of Stent Design and Vessel Geometry on the Mechanics of Intracranial Aneurysm Stent Deployment
,”
J. Biomech.
,
45
(
8
), pp.
1353
1359
.10.1016/j.jbiomech.2012.03.012
14.
Abad
,
E. M. K.
,
Pasini
,
D.
, and
Cecere
,
R.
,
2012
, “
Shape Optimization of Stress Concentration-Free Lattice For Self-Expandable Nitinol Stent-Grafts
,”
J. Biomech.
,
45
(
6
), pp.
1028
1035
.10.1016/j.jbiomech.2012.01.002
15.
Petrini
,
L.
,
Migliavacca
,
F.
,
Auricchio
,
F.
, and
Dubini
,
G.
,
2004
, “
Numerical Investigation of the Intravascular Coronary Stent Flexibility
,”
J. Biomech.
,
37
(
4
), pp.
495
501
.10.1016/j.jbiomech.2003.09.002
16.
Nalla
,
R. K.
,
Imbeni
,
V.
,
Kinney
,
J. H.
,
Staninec
,
M.
,
Marshall
,
S. J.
, and
Richie
,
R. O.
,
2003
, “
In Vitro Fatigue Behavior of Human Dentin With Implications for Life Prediction
,”
J. Biomed. Mater. Res.
,
66A
(
1
), pp.
10
20
.10.1002/jbm.a.10553
17.
Ritchie
,
R. O.
,
Kinney
,
J. H.
,
Kruzic
,
J. J.
, and
Nalla
,
R. K.
,
2006
,
Wiley Encyclopedia of Biomedical Engineering (Cortical Bone Fracture)
,
John Wiley & Sons
, Hoboken, NJ.
18.
Kruzic
,
J. J.
, and
Ritchie
,
R. O.
,
2006
, “
Kitagawa-Takahashi Diagrams Define the Limiting Conditions for Cyclic Fatigue Failure in Human Dentin
,”
J. Biomed. Mater. Res., Part A
,
79A
(3), pp.
747
751
.10.1002/jbm.a.30939
19.
International Organization for Standardization,
2008
, “
Cardiovascular Implants—Endovascular Devices—Part 2: Vascular Stents
,” ISO, Geneva, Switzerland, Standard No. ISO 25539-2:2008.
20.
Perry
,
M.
,
Oktay
,
S.
, and
Muskivitch
,
J. C.
,
2002
, “
Finite Element Analysis and Fatigue of Stents
,”
Minimally Invasive Ther. Allied Technol.
,
11
(
4
), pp.
165
171
.10.1080/136457002760273377
21.
Li
,
J.
,
Luo
,
Q.
,
Xie
,
Z.
,
Li
,
Y.
, and
Zeng
,
Y.
,
2010
, “
Fatigue Life Analysis and Experimental Verification of Coronary Stent
,”
Heart Vessels
,
25
(4), pp.
333
337
.10.1007/s00380-009-1203-9
22.
Hsiao
,
H. M.
,
Razavi
,
M. M.
,
Prabhu
,
S. S.
, and
Nikanorov
,
A. A.
,
2006
, “
Renal Artery Stent Bending Fatigue Analysis
,”
ASME J. Med. Devices
,
1
(
2
), pp.
113
118
.10.1115/1.2736396
23.
Marrey
,
R. V.
,
Burgermeister
,
R.
,
Grishaber
,
R. B.
, and
Ritchie
,
R. O.
,
2006
, “
Fatigue and Life Prediction for Cobalt-Chromium Stent: A Fracture Mechanics Analysis
,”
Biomaterials
,
27
(9), pp.
1988
2000
.10.1016/j.biomaterials.2005.10.012
24.
Schievano
,
S.
,
Parenzan
,
G.
,
Migliavacca
,
F.
,
Petrini
,
L.
,
Dubini
,
G.
, and
Bonheeffer
,
P.
,
2006
, “
Stent Fracture in Percutaneous Pulmonary Valve Implantation: A Finite Element Study
,”
J. Biomech.
,
39
(
1
), pp.
S292
S293
.10.1016/S0021-9290(06)84134-5
25.
Schievano
,
S.
,
Taylor
,
A. M.
,
Capelli
,
C.
, and
Lurz
,
P.
,
2010
, “
Patient Specific Finite Element Analysis Results in More Accurate Prediction of Stent Fractures: Application to Percutaneous Pulmonary Valve Implantation
,”
J. Biomech.
,
43
(
4
), pp.
687
693
.10.1016/j.jbiomech.2009.10.024
26.
Pelton
,
A. R.
,
Schroeder
,
V.
,
Mitchell
,
M. R.
,
Gong
,
X. Y.
,
Barney
,
M.
, and
Robertson
,
S. W.
,
2008
, “
Fatigue and Durability of Nitinol Stents
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
2
), pp.
153
164
.10.1016/j.jmbbm.2007.08.001
27.
Allen
,
R. J.
,
Booth
,
G. S.
, and
Jutla
,
T.
,
1988
, “
A Review of Fatigue Crack Growth Characterisation by Linear Elastic Fracture Mechanics (LEFM). Part I—Principles and Methods of Data Generation
,”
Fatigue Fract. Eng. Mater. Struct.
,
11
(
1
), pp.
45
69
.10.1111/j.1460-2695.1988.tb01219.x
28.
Dascalu
,
C.
,
2007
, “
An Introduction to Fracture Mechanics in Linear Elastic Materials
,”
Rev. Eur. Génie Civ.
,
11
(7–8), pp.
893
906
.10.1080/17747120.2007.9692968
29.
Pook
,
L. P. P.
,
2000
,
Linear Elastic Fracture Mechanics for Engineers: Theory and Applications
,
WIT
, Ashurst, UK.
30.
Sweeney
,
C. A.
,
O'Brien
,
B.
,
McHugh
,
P. E.
, and
Leen
,
S. B.
,
2014
, “
Experimental Characterisation for Micromechanical Modelling of CoCr Stent Fatigue
,”
Biomaterials
,
35
(
1
), pp.
36
48
.10.1016/j.biomaterials.2013.09.087
31.
Sweeney
,
C. A.
,
McHugh
,
P. E.
,
McGarry
,
J. P.
, and
Leen
,
S. B.
,
2012
, “
Micromechanical Methodology for Fatigue in Cardiovascular Stents
,”
Int. J. Fatigue
,
44
, pp.
202
216
.10.1016/j.ijfatigue.2012.04.022
32.
McCarthy
,
O. J.
,
McGarry
,
J. P.
, and
Leen
,
S. B.
,
2013
, “
Microstructure-Sensitive Prediction and Experimental Validation of Fretting Fatigue
,”
Wear
,
305
(
1–2
), pp.
100
114
.10.1016/j.wear.2013.05.012
33.
Rice
,
J. R.
,
1967
, “
Mechanics of Crack Tip Deformation and Extension by Fatigue
,”
Fatigue Crack Propagation
, ASTM International, West Conshohocken, PA, Paper No. STP47234S, pp.
247
311
.10.1520/STP47234S
34.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
Metal Fatigue in Engineering
, 2nd ed.,
John Wiley & Sons
,
New York
.
35.
El-Haddad
,
M. H.
,
Topper
,
T. H.
, and
Smith
,
K. N.
,
1979
, “
Prediction of Non-Propagating Cracks
,”
Eng. Fract. Mech.
,
11
(3), pp.
573
584
.10.1016/0013-7944(79)90081-X
36.
Jovicic
,
G.
,
2005
, “
An Extended Finite Element Method for Fracture Mechanics and Fatigue Analysis
,” Ph.D. thesis, Faculty of Mechanical Engineering, University of Kragujevac, Kragujevac, Serbia.
37.
Jovicic
,
G.
,
Nikolic
,
R.
,
Zivkovic
,
M.
,
Milovanovic
,
D.
, and
Maksimovic
,
S.
,
2013
, “
An Estimation of the High-Pressure Pipe Residual Life
,”
Arch. Civ. Mech. Eng.
,
13
(1), pp.
36
44
.10.1016/j.acme.2012.11.002
38.
Kojic
,
M.
,
Slavkovic
,
R.
,
Zivkovic
,
M.
,
Grujovic
,
N.
,
Jovicic
,
G.
, and
Vulovic
,
S.
,
2005
,
PAK-FM&F–Software for Fracture Mechanics and Fatigue based on the FEM and X-FEM. Manual
,
University of Kragujevac
,
Kragujevac, Serbia
.
39.
Kojic
,
M.
,
Filipovic
,
N.
,
Stojanovic
,
B.
, and
Kojic
,
N.
,
2008
,
Computer Modeling in Bioengineering—Theoretical Background, Examples and Software
,
John Wiley and Sons
, Chichester, UK.
40.
Kojic
,
M.
, and
Bathe
,
K. J.
,
2005
,
Inelastic Analysis of Solids and Structures
,
Springer
, Berlin.
41.
Hao
,
P.
,
Enoki
,
M.
, and
Sakurai
,
K.
,
2012
, “
Finite Element Analysis of Tensile Fatigue Behavior of Coronary Stent
,”
Jpn. Inst. Met. Mater.
,
53
(
5
), pp.
959
962
.10.2320/matertrans.MBW201116
42.
Li
,
B.
, and
de Freitas
,
M.
,
2002
, “
A Procedure for Fast Evaluation of High-Cycle Fatigue Under Multiaxial Random Loading
,”
ASME J. Mech. Des.
,
124
(3), pp.
558
563
.10.1115/1.1485291
43.
Sadananda
,
K.
,
Sarkar
,
S.
,
Kujawski
,
D.
, and
Vasudevan
,
A. K.
,
2009
, “
A Two-Parameter Analysis of S-N Fatigue Life Using Δσ and σmax
,”
Int. J. Fatigue
,
31
(11–12), pp.
1648
1659
.10.1016/j.ijfatigue.2009.03.007
44.
Ritchie
,
R. O.
,
1999
, “
Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids
,”
Int. J. Fract.
,
100
(1), pp.
55
83
.10.1023/A:1018655917051
45.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P. J.
,
2005
, “
Cardiovascular Stent Design and Vessel Strees: A Finite Element Analysis
,”
J. Biomech.
,
38
(8), pp.
1574
1581
.10.1016/j.jbiomech.2004.07.022
46.
Ito
,
Y.
,
Shih
,
A. M.
, and
Soni
,
B. K.
,
2009
, “
Octree-Based Reasonable-Quality Hexahedral Mesh Generation Using a New Set of Refinement Templates
,”
Int. J. Numer. Methods Eng.
,
77
(
13
), pp.
1809
1833
.10.1002/nme.2470
47.
Rebelo
,
N.
,
Fu
,
R.
, and
Lawrenchuk
,
M.
,
2009
, “
Study of a Nitinol Stent Deployed Into Anatomically Accurate Artery Geometry and Subjected to Realistic Service Loading
,”
J. Mater. Eng. Perform.
,
18
(5–6), pp.
655
663
.10.1007/s11665-009-9375-0
48.
Harvey
,
S. M.
,
2011
, “
Nitinol Stent Fatigue in a Peripheral Human Activity Subjected to Pulsatile and Articulation Loading
,”
J. Mater. Eng. Perform.
,
20
(4–5), pp.
697
705
.10.1007/s11665-011-9881-8
49.
Grujicic
,
M.
,
Pandurangan
,
B.
,
Arakere
,
A.
, and
Snipes
,
J. S.
,
2012
, “
Fatigue-Life Computational Analysis for the Self-Expanding Endovascular Nitinol Stents
,”
J. Mater. Eng. Perform.
,
21
(11), pp.
2218
2230
.10.1007/s11665-012-0150-2
50.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
R. S.
,
2012
, “
Performance of Self-Expanding Nitinol Stent in a Curved Artery: Impact of Stent Length and Deployment Orientation
,”
ASME J. Biomech. Eng.
,
134
(
7
), p.
071007
.10.1115/1.4007095
You do not currently have access to this content.