Stents are metal scaffold devices used to maintain lumen and restore blood flow of diseased artery. Despite they brought care of coronary diseases to a new level of efficacy, problem of stent fracture remains unclear even after global needs reached number of 5 × 106 devices yearly. For projected work-life of 10 years, rate of fracture occurrence in stents varies from 5% up to 25% for different designs. Analysis of such miniature devices and long-term events in realistic in vivo conditions remains impossible while experimental in vitro measurements provide limited results consuming much time and expensive equipment. The principal aim of this study was to propose procedure for numerical estimation of coronary stents durability assuming the hyperphysiological pulsatile pressure conditions. The hypothesis was whether the stent durability would be achieved safely for the projected work-life of 10 yr? The procedure was carried out within three phases: (a) initial fatigue analysis based on S-N approach; (b) fatigue lifetime assessment based on fatigue crack growth simulation using Paris power law, and (c) safe-operation, i.e., no-fatigue failure (based on Kitagawa–Takahashi diagram) as well as immediate predictions of the fracture event in the stent. For considered generic stent design, results showed that the stent durability would be achieved safely. Since special diagrams were used, the fatigue risk assessment was clearer compared to the conventional fatigue lifetimes. Moreover, it was found that crack growth was stable for both small and large scale sizes of the crack. Besides the fact that the presented procedure was shown as suitable for numerical assessment of the generic stent durability under hyperphysiological pulsatile pressure conditions, it was concluded that it might be applied for any other design as well as loading conditions. Moreover, it could be efficiently combined with experimental procedures during the process of the stent design validation to reduce manufacturing and testing costs.
Skip Nav Destination
Article navigation
December 2014
Research-Article
Computational Assessment of Stent Durability Using Fatigue to Fracture Approach
Gordana R. Jovicic,
Gordana R. Jovicic
Professor
Faculty of Engineering,
Sestre Janjic 6,
e-mail: gjovicic.kg.ac.rs@gmail.com
Faculty of Engineering,
University of Kragujevac
,Sestre Janjic 6,
Kragujevac 34000
, Serbia
e-mail: gjovicic.kg.ac.rs@gmail.com
Search for other works by this author on:
Arso M. Vukicevic,
Arso M. Vukicevic
Faculty of Engineering,
Sestre Janjic 6,
e-mail: arso_kg@yahoo.com
University of Kragujevac
,Sestre Janjic 6,
Kragujevac 34000
, Serbia
e-mail: arso_kg@yahoo.com
Search for other works by this author on:
Nenad D. Filipovic
Nenad D. Filipovic
Professor
Faculty of Engineering,
Sestre Janjic 6,
e-mail: fica@kg.ac.rs
Faculty of Engineering,
University of Kragujevac
,Sestre Janjic 6,
Kragujevac 34000
, Serbia
e-mail: fica@kg.ac.rs
Search for other works by this author on:
Gordana R. Jovicic
Professor
Faculty of Engineering,
Sestre Janjic 6,
e-mail: gjovicic.kg.ac.rs@gmail.com
Faculty of Engineering,
University of Kragujevac
,Sestre Janjic 6,
Kragujevac 34000
, Serbia
e-mail: gjovicic.kg.ac.rs@gmail.com
Arso M. Vukicevic
Faculty of Engineering,
Sestre Janjic 6,
e-mail: arso_kg@yahoo.com
University of Kragujevac
,Sestre Janjic 6,
Kragujevac 34000
, Serbia
e-mail: arso_kg@yahoo.com
Nenad D. Filipovic
Professor
Faculty of Engineering,
Sestre Janjic 6,
e-mail: fica@kg.ac.rs
Faculty of Engineering,
University of Kragujevac
,Sestre Janjic 6,
Kragujevac 34000
, Serbia
e-mail: fica@kg.ac.rs
Manuscript received August 22, 2013; final manuscript received May 10, 2014; published online xx xx, xxxx. Assoc. Editor: Keefe B. Manning.
J. Med. Devices. Dec 2014, 8(4): 041002 (8 pages)
Published Online: August 19, 2014
Article history
Received:
August 22, 2013
Revision Received:
May 10, 2014
Citation
Jovicic, G. R., Vukicevic, A. M., and Filipovic, N. D. (August 19, 2014). "Computational Assessment of Stent Durability Using Fatigue to Fracture Approach." ASME. J. Med. Devices. December 2014; 8(4): 041002. https://doi.org/10.1115/1.4027687
Download citation file:
Get Email Alerts
Fatigue Analysis of Nitinol Peripheral Artery Stents Under Complex Loads
J. Med. Devices (March 2025)
Related Articles
On Modeling Assumptions in Finite Element Analysis of Stents
J. Med. Devices (September,2011)
Simplified Multistage Computational Approach to Assess the Fatigue Behavior of a Niti Transcatheter Aortic Valve During In Vitro Tests: A Proof-of-Concept Study
J. Med. Devices (June,2017)
Validating Fatigue Safety Factor Calculation Methods for Cardiovascular Stents
J Biomech Eng (June,2018)
Fatigue Analysis of Nitinol Peripheral Artery Stents Under Complex Loads
J. Med. Devices (March,2025)
Related Proceedings Papers
Related Chapters
mDFA Human Empirical Results
Modified Detrended Fluctuation Analysis (mDFA)
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Section VIII, Division 3—Alternative Rules for Construction of High-Pressure Vessels
Online Companion Guide to the ASME Boiler & Pressure Vessel Codes