Computational fluid dynamics (CFD) has been used for developing and evaluating the performance of a novel design of the cardiac axial blood pump (CABP). This device could be used as an implantable pump for boosting blood circulation in patients whose hearts are not providing sufficient output. Based on the Berlin Heart configuration the blood pump has been designed for a flow rate of 5 L/mine and 100 mmHg of head pressure. Finite element analysis method has been performed to predict the shear stress, pressure, velocity, pressure drop on the fluid through the pump and the shear stress on the pump impeller. Also, flow streamlines has been discussed in detail in this study to predict the flow streamlines behavior and the stagnation points. The goal of this work is to design an efficient blood pump to support the blood circulatory system and reduce the shear stress and blood hemolysis during transport through the pump. Our design simulated at several rotational speeds (5000 to 7000) rpm to investigate the relationship between the rotational speeds and shear stress. Results indicate that the rotational speed has a direct correlation with shear stress and pressure drop and at 6500 rpm the pump gives its optimal pressure drop.