Abstract

This paper proposes a pneumatic upper limb rehabilitation robot (PULRR) which is designed for bilateral upper limb active rehabilitation of the patients after stroke. The PULRR provides an active resistance rehabilitation method based on the pneumatic control system. The air kinetics of the pneumatic cylinder model and the dynamics of the pneumatic system with load are established. An antisaturation proportional-integral-differential (PID) controller is presented for the constant resistance force control through directly adjusting the position of the throttle valve spool according to the patient's active moving speed and the feedback of the air pressure in both chambers. In addition, simulation and experimental results indicate that the controller is effective in constant resistance force control. The resistance mode proposed in this paper shows great potential in active resistance rehabilitation for the patients who suffer from the dyskinesia and insufficient muscle strength of the upper limb with enhanced safety and compliance.

References

1.
Sanchez, R. J., Wolbrecht, E., Smith, R., Liu, J., Rao, S., Cramer, S., Rahman, T., Bobrow, J. E., and Reinkensmeyer, D. J.
,
2005
, “
A Pneumatic Robot for Re-Training Arm Movement After Stroke: Rationale and Mechanical Design
,” Ninth International Conference on Rehabilitation Robotics (
ICORR
), Chicago, IL, June 28–July 1, pp.
500
504
.10.1109/ICORR.2005.1501151
2.
Xu, H., Zhang, M. M., Li, Y. B., Xu, D., Fu, J. M., Zhang, X., Li, X. L., and Xie, S. Q.
,
2018
, “
Development of a Pneumatic Robotic System for Bilateral Upper Limb Interactive Training With Variable Resistance
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
), Auckland, New Zealand, July 9–12, pp.
968
973
.10.1109/AIM.2018.8452438
3.
Jian
,
H.
,
Xikai
,
T.
, and
Jiping
,
H.
,
2015
, “
Design and Evaluation of the RUPERT Wearable Upper Extremity Exoskeleton Robot for Clinical and In-Home Therapies
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
46
, pp.
1
10
.10.1109/TSMC.2015.2497205
4.
Zhang
,
M.
,
Xie
,
S. Q.
,
Li
,
X.
,
Zhu
,
G.
,
Meng
,
W.
,
Huang
,
X.
, and
Veale
,
A. J.
,
2018
, “
Adaptive Patient-Cooperative Control of a Compliant Ankle Rehabilitation Robot (CARR) With Enhanced Training Safety
,”
IEEE Trans. Ind. Electron.
,
65
(
2
), pp.
1398
1407
.10.1109/TIE.2017.2733425
5.
Perry
,
J. C.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatronics
,
12
(
4
), pp.
408
417
.10.1109/TMECH.2007.901934
6.
Rocon
,
E.
,
Belda-Lois
,
J. M.
,
Ruiz
,
A. F.
,
Manto
,
M.
,
Moreno
,
J. C.
, and
Pons
,
J. L.
,
2007
, “
Design and Validation of a Rehabilitation Robotic Exoskeleton for Tremor Assessment and Suppression
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
367
378
.10.1109/TNSRE.2007.903917
7.
Veneman
,
J. F.
,
Kruidhof
,
R.
,
Hekman
,
E. E. G.
,
Ekkelenkamp
,
R.
,
van Asseldonk
,
E. H. F.
, and
van der Kooij
,
H.
,
2007
, “
Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
379
386
.10.1109/TNSRE.2007.903919
8.
Xu, D., Zhang, M. M., Sun, Y., Zhang, X., Xu, H., Li, Y. B., Li, X. L., and Xie, S. Q.
,
2018
, “
Development of a Reconfigurable Wrist Rehabilitation Device With an Adaptive Forearm Holder
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
), Auckland, New Zealand, July 9–12, pp.
454
459
.10.1109/AIM.2018.8452363
9.
Yu
,
H.
,
Huang
,
S.
,
Chen
,
G.
,
Pan
,
Y.
, and
Guo
,
Z.
,
2015
, “
Robot Interaction Control of Rehabilitation Robots With Series Elastic Actuators
,”
IEEE Trans. Rob.
,
31
(
5
), pp.
1089
1100
.10.1109/TRO.2015.2457314
10.
Nef
,
T.
,
Guidali
,
M.
, and
Riener
,
R.
,
2009
, “
ARMin III–Arm Therapy Exoskeleton With an Ergonomic Shoulder Actuation
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
127
142
.10.1155/2009/962956
11.
Frisoli
,
A.
,
Salsedo
,
F.
,
Bergamasco
,
M.
,
Rossi
,
B.
, and
Carboncini
,
M. C.
,
2009
, “
A Force-Feedback Exoskeleton for Upper-Limb Rehabilitation in Virtual Reality
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
115
126
.10.1155/2009/378254
12.
Frisoli
,
A.
,
Loconsole
,
C.
,
Leonardis
,
D.
,
Banno
,
F.
,
Barsotti
,
M.
,
Chisari
,
C.
, and
Bergamasco
,
M.
,
2012
, “
A New Gaze-BCI-Driven Control of an Upper Limb Exoskeleton for Rehabilitation in Real-World Tasks
,”
IEEE Trans. Syst., Man, Cybern., Part C
,
42
(
6
), pp.
1169
1179
.10.1109/TSMCC.2012.2226444
13.
Jiang
,
X. Z.
,
Xiong
,
C. H.
,
Sun
,
R. L.
, and
Xiong
,
Y. L.
,
2011
, “
Characteristics of the Robotic Joint of a 9-Dof Upper Limb Rehabilitation Robot Driven by Pneumatic Muscles
,”
Int. J. Humanoid Rob.
,
8
(
4
), pp.
743
760
.10.1142/S0219843611002642
14.
Krebs
,
H. I.
,
Palazzolo
,
J. J.
,
Dipietro
,
L.
,
Ferraro
,
M.
,
Krol
,
J.
,
Rannekleiv
,
K.
,
Volpe
,
B. T.
, and
Hogan
,
N.
,
2003
, “
Rehabilitation Robotics: Performance-Based Progressive Robot-Assisted Therapy
,”
Auton. Robots
,
15
(
1
), pp.
7
20
.10.1023/A:1024494031121
15.
Sivan
,
M.
,
Gallagher
,
J.
,
Makower
,
S.
,
Keeling
,
D.
,
Bhakta
,
B.
,
O'Connor
,
R. J.
, and
Levesley
,
M.
,
2014
, “
Home-Based Computer Assisted Arm Rehabilitation (hCAAR) Robotic Device for Upper Limb Exercise After Stroke: Results of a Feasibility Study in Home Setting
,”
J. Neuroeng. Rehabil.
,
11
(
1
), p.
163
.10.1186/1743-0003-11-163
16.
Hesse
,
S.
,
Schulte-Tigges
,
G.
,
Konrad
,
M.
,
Bardeleben
,
A.
, and
Werner
,
C.
,
2003
, “
Robot-Assisted Arm Trainer for the Passive and Active Practice of Bilateral Forearm and Wrist Movements in Hemiparetic Subjects
,”
Arch. Phys. Med. Rehabil.
,
84
(
6
), pp.
915
920
.10.1016/s0003-9993(02)04954-7
17.
van Delden
,
A. E. Q.
,
Peper
,
C. E.
,
Kwakkel
,
G.
, and
Beek
,
P. J.
,
2012
, “
A Systematic Review of Bilateral Upper Limb Training Devices for Poststroke Rehabilitation
,”
Stroke Res. Treat.
,
2012
, pp.
1
17
.10.1155/2012/972069
18.
Brackenridge
,
J.
,
V Bradnam
,
L.
,
Lennon
,
S.
,
J Costi
,
J.
, and
A Hobbs
,
D.
,
2016
, “
A Review of Rehabilitation Devices to Promote Upper Limb Function Following Stroke
,”
Neurosci. Biomed. Eng.
,
4
(
1
), pp.
25
42
.10.2174/2213385204666160303220102
19.
Lo
,
H. S.
, and
Xie
,
S. Q.
,
2012
, “
Exoskeleton Robots for Upper-Limb Rehabilitation: State of the Art and Future Prospects
,”
Med. Eng. Phys.
,
34
, pp.
261
268
.10.1016/j.medengphy.2011.10.004
20.
Proietti
,
T.
,
Crocher
,
V.
,
Roby-Brami
,
A.
, and
Jarrasse
,
N.
,
2016
, “
Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies
,”
IEEE Rev. Biomed. Eng.
,
9
, pp.
4
14
.10.1109/RBME.2016.2552201
21.
McCombe Waller
,
S.
, and
Whitall
,
J.
,
2008
, “
Bilateral Arm Training: Why and Who Benefits?
,”
NeuroRehabilitation
,
23
(
1
), pp.
29
41
.10.3233/NRE-2008-23104
22.
Stewart
,
K. C.
,
Cauraugh
,
J. H.
, and
Summers
,
J. J.
,
2006
, “
Bilateral Movement Training and Stroke Rehabilitation: A Systematic Review and Meta-Analysis
,”
J. Neurol. Sci.
,
244
(
1–2
), pp.
89
95
.10.1016/j.jns.2006.01.005
23.
Miao
,
Q.
,
McDaid
,
A.
,
Zhang
,
M.
,
Kebria
,
P.
, and
Li
,
H.
,
2018
, “
A Three-Stage Trajectory Generation Method for Robot-Assisted Bilateral Upper Limb Training With Subject-Specific Adaptation
,”
Rob. Auton. Syst.
,
105
, pp.
38
46
.10.1016/j.robot.2018.03.010
24.
Kwakkel
,
G.
,
Kollen
,
B. J.
, and
Krebs
,
H. I.
,
2008
, “
Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review
,”
Neurorehabilitation Neural Repgas
,
22
, pp.
111
121
.10.1177/1545968307305457
25.
Debaere
,
F.
,
Wenderoth
,
N.
,
Sunaert
,
S.
,
Van Hecke
,
P.
, and
Swinnen
,
S. P.
,
2004
, “
Changes in Brain Activation During the Acquisition of a New Bimanual Coordination Task
,”
Neuropsychologia
,
42
(
7
), pp.
855
867
.10.1016/j.neuropsychologia.2003.12.010
26.
Colombo
,
R.
,
Pisano
,
F.
,
Micera
,
S.
,
Mazzone
,
A.
,
Delconte
,
C.
,
Carrozza
,
M. C.
,
Dario
,
P.
, and
Minuco
,
G.
,
2005
, “
Robotic Techniques for Upper Limb Evaluation and Rehabilitation of Stroke Patients
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
13
(
3
), pp.
311
324
.10.1109/TNSRE.2005.848352
27.
Reinkensmeyer
,
D. J.
,
Emken
,
J. L.
, and
Cramer
,
S. C.
,
2004
, “
Robotics, Motor Learning, and Neurologic Recovery
,”
Annu. Rev. Biomed. Eng.
,
6
(
1
), pp.
497
525
.10.1146/annurev.bioeng.6.040803.140223
28.
Wang
,
J.
, and
Li
,
Y.
,
2010
, “A Cooperated-Robot Arm Used for Rehabilitation Treatment With Hybrid Impedance Control Method,”
Intelligent Robotics and Applications
, ICIRA 2010, Shanghai, China, Nov. 10–12, pp.
451
462
.10.1007/978-3-642-16587-0_42
29.
Trlep
,
M.
,
Mihelj
,
M.
,
Puh
,
U.
, and
Munih
,
M.
,
2011
, “
Rehabilitation Robot With Patient-Cooperative Control for Bimanual Training of Hemiparetic Subjects
,”
Adv. Rob.
,
25
(
15
), pp.
1949
1968
.10.1163/016918611X588853
30.
Trlep
,
M.
,
Mihelj
,
M.
, and
Munih
,
M.
,
2012
, “
Skill Transfer From Symmetric and Asymmetric Bimanual Training Using a Robotic System to Single Limb Performance
,”
J. Neuroeng. Rehabil.
,
9
(
1
), p.
43
.10.1186/1743-0003-9-43
31.
Loureiro
,
R. C.
,
Harwin
,
W. S.
,
Lamperd
,
R.
, and
Collin
,
C.
,
2014
, “
Evaluation of Reach and Grasp Robot-Assisted Therapy Suggests Similar Functional Recovery Patterns on Proximal and Distal Arm Segments in Sub-Acute Hemiplegia
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
3
), pp.
593
602
.10.1109/TNSRE.2013.2265263
32.
He, J. P., Koeneman, E. J., Schultz, R. S., Huang, H., Wanberg, J., Herring, D. E., Sugar, T., Herman, R., and Koeneman, J. B.
,
2005
, “
Design of a Robotic Upper Extremity Repetitive Therapy Device
,” Ninth International Conference on Rehabilitation Robotics (
ICORR
), Chicago, IL, June 28–July 1, pp.
95
98
.10.1109/ICORR.2005.1501060
33.
Tsagarakis
,
N.
, and
Caldwell
,
D. G.
,
2000
, “
Improved Modelling and Assessment of Pneumatic Muscle Actuators
,”
Proceedings 2000 (ICRA). Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
, San Francisco, CA, Apr. 24–28, pp.
3641
3646
.10.1109/ROBOT.2000.845299
34.
Culmer
,
P. R.
,
Jackson
,
A. E.
,
Makower
,
S.
,
Richardson
,
R.
,
Cozens
,
J. A.
,
Levesley
,
M. C.
, and
Bhakta
,
B. B.
,
2010
, “
A Control Strategy for Upper Limb Robotic Rehabilitation With a Dual Robot System
,”
IEEE/ASME Trans. Mechatronics
,
15
(
4
), pp.
575
585
.10.1109/TMECH.2009.2030796
35.
Gulati
,
N.
, and
Barth
,
E. J.
,
2009
, “
A Globally Stable, Load-Independent Pressure Observer for the Servo Control of Pneumatic Actuators
,”
IEEE Trans. Mechatronics
,
14
(
3
), pp.
295
306
.10.1109/TMECH.2008.2009222
36.
Zhang
,
X.-D.
,
Hu
,
C.-W.
,
Sun
,
H.-X.
, and
Jia
,
Q.-X.
,
2011
, “
Space Manipulator Output Feedback Anti-Saturation PID Control Design
,”
J. Beijing Univ. Posts Telecommun.
,
34
(
4
), pp.
19
22
.http://journal13.magtechjournal.com/Jwk_yddxzrb/EN/10.13190/jbupt.201104.19.zhangxd
37.
Meng
,
P.
, and
Guoyang
,
C.
,
2014
, “
Experimental Study of Three Anti-Windup PID Control Schemes
,”
Electric Drive
,
44
(
3
), pp.
50
53
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQCZ201403011.htm
You do not currently have access to this content.