Abstract

This paper presents the results of an investigative study on the development of an affordable and functional prosthetic foot for below knee amputees. A prototype was successfully manufactured using three-dimensional (3D) printing technology. This continuously evolving technology enables the rapid production of prosthetics that are individually customized for each patient. Our prototype was developed after conducting a topology optimization study that interestingly converged to the shape of the biological human foot. Afterward, a design was envisioned where a simple energy storage and release (ESAR) mechanism was implemented to replace the Achilles tendon, which minimizes the metabolic energy cost of walking. Our mechanism can successfully manage 70% of the energy compared to a normal person during each walking step. A finite element (FE) model of the prosthetic was developed and validated using experimental tests. Then, this FE model was used to confirm the safe operation of the prosthetic through simulating different loading scenarios according to the ISO standard. A prototype was successfully tested by a healthy person using an adapter that was designed and 3D printed for this purpose. Our study clearly showed that customizable prosthetics could be produced at a fraction 1/60 of the cost of the commercially sold ones.

References

1.
Grimmer
,
M.
, and
Seyfarth
,
A.
,
2014
, “
Mimicking Human-Like Leg Function in Prosthetic Limbs
,”
Neuro-Robotics, Trends in Augmentation of Human Performance
, P. Artemiadis, ed., Vol.
2
, Springer, Dordrecht, The Netherlands, pp.
105
155
.10.1007/978-94-017-8932-5_5
2.
Windrich
,
M.
,
Grimmer
,
M.
,
Christ
,
O.
,
Rinderknecht
,
S.
, and
Beckerle
,
P.
,
2016
, “
Active Lower Limb Prosthetics: A Systematic Review of Design Issues and Solutions
,”
Biomed. Eng. Online
,
15
(
S3
), p.
140
.10.1186/s12938-016-0284-9
3.
Grabowski
,
A. M.
, and
D'Andrea
,
S.
,
2013
, “
Effects of a Powered Ankle-Foot Prosthesis on Kinetic Loading of the Unaffected Leg During Level-Ground Walking
,”
J. Neuroeng. Rehabil.
,
10
(
1
), p.
49
.10.1186/1743-0003-10-49
4.
Pearlman
,
J.
,
Cooper
,
R. A.
,
Krizack
,
M.
,
Lindsley
,
A.
,
Wu
,
Y.
,
Reisinger
,
K. D.
,
Armstrong
,
W.
,
Casanova
,
H.
,
Chhabra
,
H. S.
, and
Noon
,
J.
,
2008
, “
Lower-Limb Prostheses and Wheelchairs in Low-Income Countries [An Overview]
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
2
), pp.
12
22
.10.1109/EMB.2007.907372
5.
Andrysek
,
J.
,
2010
, “
Lower-Limb Prosthetic Technologies in the Developing World: A Review of Literature From 1994–2010
,”
Prosthet. Orthotics Int.
,
34
(
4
), pp.
378
398
.10.3109/03093646.2010.520060
6.
LeMoyne
,
R.
,
2016
,
Advances for Prosthetic Technology
,
Springer
,
Tokyo, Japan
.
7.
Jin
,
Y-An.
,
Plott
,
J.
,
Chen
,
R.
,
Wensman
,
J.
, and
Shih
,
A.
,
2015
, “
Additive Manufacturing of Custom Orthoses and Prostheses—A Review
,”
Procedia CIRP
,
36
, pp.
199
204
.10.1016/j.procir.2015.02.125
8.
Attaran
,
M.
,
2017
, “
The Rise of 3-D Printing: The Advantages of Additive Manufacturing Over Traditional Manufacturing
,”
Bus. Horiz.
,
60
(
5
), pp.
677
688
.10.1016/j.bushor.2017.05.011
9.
McNally
,
D.
, 2012, “Army Researchers Use Cutting Edge 3D Printers,” Aberdeen Proving Ground, Aberdeen, MA, accessed Feb. 20, 2020, https://www.army.mil/article/88464/army_researchers_use_cutting_edge_3d_printers
10.
Faustini
,
M. C.
,
Neptune
,
R. R.
,
Crawford
,
R. H.
, and
Stanhope
,
S. J.
,
2008
, “
Manufacture of Passive Dynamic Ankle–Foot Orthoses Using Selective Laser Sintering
,”
IEEE Trans. Biomed. Eng.
,
55
(
2
), pp.
784
790
.10.1109/TBME.2007.912638
11.
Gibson
,
K. S.
,
Woodburn
,
J.
,
Porter
,
D.
, and
Telfer
,
S.
,
2014
, “
Functionally Optimized Orthoses for Early Rheumatoid Arthritis Foot Disease: A Study of Mechanisms and Patient Experience
,”
Arthritis Care Res.
,
66
(
10
), pp.
1456
1464
.10.1002/acr.22060
12.
Kucewicz
,
M.
,
Baranowski
,
P.
,
Malachowski
,
J.
,
Poplawski
,
A.
, and
Platek
,
P.
,
2018
, “
Modelling, and Characterization of 3D Printed Cellular Structures
,”
Mater. Des.
,
142
, pp.
177
189
.10.1016/j.matdes.2018.01.028
13.
Tack
,
P.
,
Victor
,
J.
,
Gemmel
,
P.
, and
Annemans
,
L.
,
2016
, “
3D-Printing Techniques in a Medical Setting: A Systematic Literature Review
,”
Biomed. Eng. Online
,
15
(
1
), p.
115
.10.1186/s12938-016-0236-4
14.
Tao
,
Z.
,
Ahn
,
H.-J.
,
Lian
,
C.
,
Lee
,
K.-H.
, and
Lee
,
C.-H.
,
2017
, “
Design and Optimization of Prosthetic Foot by Using Polylactic Acid 3D Printing
,”
J. Mech. Sci. Technol.
,
31
(
5
), pp.
2393
2398
.10.1007/s12206-017-0436-2
15.
Prinsen
,
E. C.
,
Nederhand
,
M. J.
, and
Rietman
,
J. S.
,
2011
, “
Adaptation Strategies of the Lower Extremities of Patients With a Transtibial or Transfemoral Amputation During Level Walking: A Systematic Review
,”
Arch. Phys. Med. Rehabil.
,
92
(
8
), pp.
1311
1325
.10.1016/j.apmr.2011.01.017
16.
Herr
,
H.
,
2009
, “
Exoskeletons and Orthoses: Classification, Design Challenges and Future Directions
,”
J. Neuroeng. Rehabil.
,
6
(
1
), p.
21
.10.1186/1743-0003-6-21
17.
Hafner, B. J., Sanders, J. E., Czerniecki, J. M., and Fergason, J., 2002, “Transtibial Energy-Storage-and-Return Prosthetic Devices: A Review of Energy Concepts and a Proposed Nomenclature,”
J. Rehabil. Res. Dev.
, 39(1), pp. 1–11.https://www.ncbi.nlm.nih.gov/pubmed/11926321
18.
Arifin
,
N.
,
Osman
,
N. A. A.
,
Ali
,
S.
, and
Abas
,
W. A. B. W.
,
2014
, “
The Effects of Prosthetic Foot Type and Visual Alteration on Postural Steadiness in Below-Knee Amputees
,”
Biomed. Eng. Online
,
13
(
1
), p.
23
.10.1186/1475-925X-13-23
19.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
, Hoboken, NJ.
20.
Herman
,
I. P.
,
2016
,
Physics of the Human Body
,
Springer
, New York.
21.
Saladin, K. S., and McFarland, R., 2008,
Human Anatomy,
McGraw-Hill Higher Education, Boston, MA.
22.
Michell
,
A. G. M.
,
1904
, “
LVIII. The Limits of Economy of Material in Frame-Structures
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
8
(
47
), pp.
589
597
.10.1080/14786440409463229
23.
Whittle
,
M. W.
,
2014
,
Gait Analysis: An Introduction
,
Butterworth-Heinemann
, Oxford, UK.
24.
Farah
,
S.
,
Anderson
,
D. G.
, and
Langer
,
R.
,
2016
, “
Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review
,”
Adv. Drug Delivery Rev.
,
107
, pp.
367
392
.10.1016/j.addr.2016.06.012
25.
Dai
,
X.-Q.
,
Li
,
Y.
,
Zhang
,
M.
, and
Cheung
,
J. T.-M.
,
2006
, “
Effect of Sock on Biomechanical Responses of Foot During Walking
,”
Clin. Biomech.
,
21
(
3
), pp.
314
321
.10.1016/j.clinbiomech.2005.10.002
26.
Postema
,
K.
,
Hermens
,
H. J.
,
De Vries
,
J.
,
Koopman
,
H. F.
, and
Eisma
,
W.
,
1997
, “
Energy Storage and Release of Prosthetic Feet Part 1—Biomechanical Analysis Related to User Benefits
,”
Prosthet. Orthotics Int.
,
21
(
1
), pp.
17
27
.10.3109/03093649709164526
27.
Shigley
,
J. E.
,
2011
,
Shigley's Mechanical Engineering Design
,
Tata McGraw-Hill Education
, New York.
28.
Ku
,
P. X.
,
Osman
,
N. A. A.
, and
Abas
,
W. A. B. W.
,
2014
, “
Balance Control in Lower Extremity Amputees During Quiet Standing: A Systematic Review
,”
Gait Posture
,
39
(
2
), pp.
672
682
.10.1016/j.gaitpost.2013.07.006
29.
Horak
,
F. B.
,
2006
, “
Postural Orientation and Equilibrium: What Do We Need to Know About Neural Control of Balance to Prevent Falls?
,”
Age Ageing
,
35
(
Suppl_2
), pp.
ii7
ii11
.10.1093/ageing/afl077
30.
ISO
,
2016
, “
Prosthetics: Structural Testing of Lower Limb Prostheses: Requirements and Test Methods
,” ISO, Geneva, Switzerland, Standard No.
ISO-10328
.https://www.iso.org/standard/70205.html
31.
ASTM International
,
2003
, “
Standard Test Method for Tensile Properties of Plastics
,” ASTM International, West Conshohocken, PA, Standard No. D638-02a.
You do not currently have access to this content.