Abstract

Mechanism with few degrees-of-freedom is an economical solution for rehabilitation robots because it does not need a complicated structure and control system. To provide motion data to design the robot with few degrees-of-freedom, a user motion data acquisition, and processing method on the mobile platform is proposed. The data from the monocular vision system have been used on the smartphone and the KCF algorithm to track the knee and hip joints motion. To increase the stability and the precision, the maker with texture is designed to carry out the tracking. Furthermore, the transformation from the image coordinate to the world coordinate is implemented by the cross-ratio invariant in the controlled tracking condition with fixed dimension makers. By this mean, the motion path in the image coordinate is converted to that in the world coordinate. With the low limb motion path that provides the input of the Fourier descriptor, the mechanical parameters of the robot with few degrees-of-freedom are calculated, and the 3D models of the mechanism are constructed. Finally, the prototype of the rehabilitation robot is established which can assist the users to stand from sitting posture, or work as a wheelchair with obstacle avoidance function by infrared and ultrasonic sensors.

References

1.
Krebs
,
H.
,
Dipietro
,
L.
,
Levy-Tzedek
,
S.
,
Fasoli
,
S.
,
Rykman-Berland
,
A.
,
Zipse
,
J.
,
Fawcett
,
J.
,
Stein
,
J.
,
Poizner
,
H.
,
Lo
,
A.
,
Volpe
,
B.
, and
Hogan
,
N.
,
2008
, “
A Paradigm Shift for Rehabilitation Robotics
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
4
), pp.
61
70
.10.1109/MEMB.2008.919498
2.
Haraguchi
,
M.
, Kikuchi, T., Jin, Y., Fukushima, K., Furusho, J., Inoue, A., and Oda, K.,
2007
, “
3D Rehabilitation Systems for Upper Limbs Using ER Actuators/Brakes With High Safety: ‘EMUL’, ‘Robotherapist’ and ‘PLEMO’
,”
17th International Conference on Artificial Reality and Telexistence
(
ICAT 2007
), Esbjerg, Jylland, Demark, Nov. 28–30, pp.
258
263
.10.1109/ICAT.2007.6
3.
Kemna
,
S.
, Culmer, P. R., Jackson, A. E., Makower, S., Gallagher, J. F., Holt, R., Cnossen, F., Cozens, J. A., Levesley, M. C., and Bhakta, B. B.,
2009
, “
Developing a User Interface for the iPAM Stroke Rehabilitation System
,”
IEEE International Conference on Rehabilitation Robotics
, Kyoto, Japan, June 23–26, pp.
879
884
.10.1109/ICORR.2009.5209507
4.
Riener
,
R.
,
Lünenburger
,
L.
,
Maier
,
I.
,
Colombo
,
G.
, and
Dietz
,
V.
,
2010
, “
Locomotor Training in Subjects With Sensori-Motor Deficits: An Overview of the Robotic Gait Orthosis Lokomat[J]
,”
J. Healthcare Eng.
,
1
(
2
), pp.
197
216
.10.1260/2040-2295.1.2.197
5.
Veneman
,
J. F.
,
Kruidhof
,
R.
,
Hekman
,
E. E. G.
,
Ekkelenkamp
,
R.
,
Van Asseldonk
,
E. H. F.
, and
van der Kooij
,
H.
,
2007
, “
Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
15
(
3
), pp.
379
386
.10.1109/TNSRE.2007.903919
6.
Xydas
,
E. G.
,
Louca
,
L. S.
, and
Mueller
,
A.
,
2015
, “
Analysis and Passive Control of a Four-Bar Linkage for the Rehabilitation of Upper Limb Motion
,”
ASME
Paper No. DSCC2015-9916.10.1115/DSCC2015-9916
7.
Rauen
,
K.
,
Schaffrath
,
J.
,
Pradhan
,
C.
,
Schniepp
,
R.
, and
Jahn
,
K.
,
2018
, “
Accelerometric Trunk Sensors to Detect Changes of Body Positions in Immobile Patients
,”
Sensors
,
18
(
10
), p.
3272
.10.3390/s18103272
8.
Hare
,
S.
,
Golodetz
,
S.
,
Saffari
,
A.
,
Vineet
,
V.
,
Cheng
,
M.-M.
,
Hicks
,
S. L.
, and
Torr
,
P. H. S.
,
2016
, “
Struck: Structured Output Tracking With Kernels
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
38
(10), pp. 2096–2109.10.1109/TPAMI.2015.2509974
9.
Kalal
,
Z.
,
Mikolajczyk
,
K.
, and
Matas
,
J.
, 2012, “Tracking-Learning-Detection,”
IEEE Trans. Pattern Anal. Mach. Intell.
, 34(7), pp.
1409
1422
.10.1109/TPAMI.2011.239
10.
Henriques
,
J. F.
,
Caseiro
,
R.
,
Martins
,
P.
, and
Batista
,
J.
,.
2015
, “
High-Speed Tracking With Kernelized Correlation Filters
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
37
(
3
), pp.
583
596
.10.1109/TPAMI.2014.2345390
11.
Wang
,
Q.
,
Zhang
,
L.
,
Bertinetto
,
L.
,
Hu
,
W.
, and
Torr
,
P. H. S.
,
2019
, “Fast Online Object Tracking and Segmentation: A Unifying Approach,”
The IEEE Conference on Computer Vision and Pattern Recognition
(
CVPR
), pp.
1328
1338
.http://openaccess.thecvf.com/content_CVPR_2019/html/Wang_Fast_Online_Object_Tracking_and_Segmentation_A_Unifying_Approach_CVPR_2019_paper.html
12.
Li
,
B.
,
Wu
,
W.
,
Wang
,
Q.
, Zhang, F., Xing, J., and Yan, J.,
2018
, “
SiamRPN++: Evolution of Siamese Visual Tracking With Very Deep Networks
,”.http://openaccess.thecvf.com/content_CVPR_2019/papers/Li_SiamRPN_Evolution_of_Siamese_Visual_Tracking_With_Very_Deep_Networks_CVPR_2019_paper.pdf
13.
Li
,
X.
,
Zhao
,
P.
, and
Ge
,
Q. J.
,
2012
, “
A Fourier Descriptor Based Approach to Design Space Decomposition for Planar Motion Approximation
,”
ASME
Paper No. JMR-15-1349. 10.1115/JMR-15-1349
14.
Li
,
X.
,
Ge
,
X.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2015
, “
A Unified Algorithm Analysis and Simulation Planar Four-Bar Motions Defined R-P-Joints
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011014
.10.1115/1.4029295
15.
Li
,
X.
, and
Chen
,
P.
,
2017
, “
A Parametrization-Invariant Fourier Approach to Planar Linkage Synthesis for Path Generation
,”
Math. Probl. Eng.
,
11
, p.
8458149
.10.1155/2017/8458149
16.
Li
,
X.
,
Zhao
,
P.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2018
, “
A Unified Approach to Exact and Approximate Motion Synthesis of Spherical Four-Bar Linkages Via Kinematic Mapping
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011003
.10.1115/1.4038305
17.
Li
,
X.
,
Ge
,
Q. J.
, and
Gao
,
F.
,
2019
, “
A Computational Geometric Approach Motion Generation Spatial Linkages Sphere Plane Constraints
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
014504
.10.1115/1.4041788
You do not currently have access to this content.