Abstract

This paper presents a machine learning-based approach toward designing individually targeted rehabilitation devices. This approach consists of a classification model for early detection of a disease, regression, and artificial neural networks (ANNs) models to predict the target rehabilitation gait for a specific individual, and finally a generative approach for the conditional synthesis of single degree-of-freedom linkage mechanisms for gait rehabilitation. Design of mechanisms for human–machine interaction involves numerous subjective criteria and constraints in addition to the motion task. This is particularly important for the rehabilitation devices, where the size, complexity, weight, cost, and ease of use are critical factors. In this paper, we present an end-to-end computational approach for developing a device for individualized gait rehabilitation using machine learning techniques focusing on gait classification, prediction, and specialized device design. These models generate a distribution of linkage mechanisms, which strongly correlate to the distribution of target path variations. This way of formulating the problem results in a large variety of solutions to which subjective criteria can be applied to yield practically useful design concepts that would otherwise not be possible using traditional synthesis methods.

References

1.
Okoro
,
C. A.
,
Hollis
,
N. D.
,
Cyrus
,
A. C.
, and
Griffin-Blake
,
S.
,
2018
, “
Prevalence of Disabilities and Health Care Access by Disability Status and Type Among Adults-United States, 2016
,”
Morbidity Mortal. Wkly. Rep.
,
67
(
32
), pp.
882
887
.10.15585/mmwr.mm6732a3
2.
Lawrence
,
E. S.
,
Coshall
,
C.
,
Dundas
,
R.
,
Stewart
,
J.
,
Rudd
,
A. G.
,
Howard
,
R.
, and
Wolfe
,
C. D.
,
2001
, “
Estimates of the Prevalence of Acute Stroke Impairments and Disability in a Multiethnic Population
,”
Stroke
,
32
(
6
), pp.
1279
1284
.10.1161/01.STR.32.6.1279
3.
Sommerfeld
,
D. K.
,
Eek
,
E. U.-B.
,
Svensson
,
A.-K.
,
Holmqvist
,
L. W.
, and
von Arbin
,
M. H.
,
2004
, “
Spasticity After Stroke: Its Occurrence and Association With Motor Impairments and Activity Limitations
,”
Stroke
,
35
(
1
), pp.
134
139
.10.1161/01.STR.0000105386.05173.5E
4.
Wolff
,
J.
,
Parker
,
C.
,
Borisoff
,
J.
,
Mortenson
,
W. B.
, and
Mattie
,
J.
,
2014
, “
A Survey of Stakeholder Perspectives on Exoskeleton Technology
,”
J. Neuroeng. Rehabil.
,
11
(
1
), p.
169
.10.1186/1743-0003-11-169
5.
Jezernik
,
S.
,
Colombo
,
G.
,
Keller
,
T.
,
Frueh
,
H.
, and
Morari
,
M.
,
2003
, “
Robotic Orthosis Lokomat: A Rehabilitation and Research Tool
,”
Neuromodulation: Technol. Neural Interface
,
6
(
2
), pp.
108
115
.10.1046/j.1525-1403.2003.03017.x
6.
Susko
,
T.
,
Swaminathan
,
K.
, and
Krebs
,
H. I.
,
2016
, “
MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(
10
), pp.
1089
1099
.10.1109/TNSRE.2016.2533492
7.
Peshkin
,
M.
,
Brown
,
D. A.
,
Santos-Munné
,
J. J.
,
Makhlin
,
A.
,
Lewis
,
E.
,
Colgate
,
J. E.
,
Patton
,
J.
, and
Schwandt
,
D.
,
2005
, “
KineAssist: A Robotic Overground Gait and Balance Training Device
,”
Ninth International Conference on Rehabilitation Robotics
(
ICORR 2005
), Chicago, IL, June 28–July 1, pp.
241
246
.10.1109/ICORR.2005.1501094
8.
Colombo
,
G.
,
Joerg
,
M.
,
Schreier
,
R.
, and
Dietz
,
V.
,
2000
, “
Treadmill Training of Paraplegic Patients Using a Robotic Orthosis
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
693
700
. https://www.ncbi.nlm.nih.gov/pubmed/11321005
9.
Veneman
,
J. F.
,
Kruidhof
,
R.
,
Hekman
,
E. E.
,
Ekkelenkamp
,
R.
,
Van Asseldonk
,
E. H.
, and
Van Der Kooij
,
H.
,
2007
, “
Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
379
386
.10.1109/TNSRE.2007.903919
10.
Banala
,
S. K.
,
Kim
,
S. H.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2008
, “
Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)
,”
Second IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
, Scottsdale, AZ, Oct. 19–22, pp.
653
658
.10.1109/BIOROB.2008.4762885
11.
Hesse
,
S.
, and
Uhlenbrock
,
D.
,
2000
, “
A Mechanized Gait Trainer for Restoration of Gait
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
701
708
.https://www.ncbi.nlm.nih.gov/pubmed/11321006
12.
Schmidt
,
H.
,
Werner
,
C.
,
Bernhardt
,
R.
,
Hesse
,
S.
, and
Krüger
,
J.
,
2007
, “
Gait Rehabilitation Machines Based on Programmable Footplates
,”
J. Neuroeng. Rehabil.
,
4
(
1
), p.
2
.10.1186/1743-0003-4-2
13.
Hesse
,
S.
,
Waldner
,
A.
, and
Tomelleri
,
C.
,
2010
, “
Innovative Gait Robot for the Repetitive Practice of Floor Walking and Stair Climbing Up and Down in Stroke Patients
,”
J. Neuroeng. Rehabil.
,
7
(
1
), p.
30
.10.1186/1743-0003-7-30
14.
Díaz
,
I.
,
Gil
,
J. J.
, and
Sánchez
,
E.
,
2011
, “
Lower-Limb Robotic Rehabilitation: Literature Review and Challenges
,”
J. Rob.
,
2011
, p.
759764
. 10.1155/2011/759764
15.
Shao
,
Y.
,
Xiang
,
Z.
,
Liu
,
H.
, and
Li
,
L.
,
2016
, “
Conceptual Design and Dimensional Synthesis of Cam-Linkage Mechanisms for Gait Rehabilitation
,”
Mech. Mach. Theory
,
104
, pp.
31
42
.10.1016/j.mechmachtheory.2016.05.018
16.
Tsuge
,
B. Y.
, and
McCarthy
,
J. M.
,
2016
, “
An Adjustable Single Degree-of-Freedom System to Guide Natural Walking Movement for Rehabilitation
,”
ASME J. Med. Devices
,
10
(
4
), p.
044501
.10.1115/1.4033329
17.
Deshpande
,
S.
, and
Purwar
,
A.
,
2017
, “
A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061005
.10.1115/1.4037801
18.
Ge
,
Q. J.
,
Purwar
,
A.
,
Zhao
,
P.
, and
Deshpande
,
S.
,
2016
, “
A Task Driven Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of G-Manifolds
,”
ASME J. Comput. Inf. Sci. Eng.
, 17(3), p.
031011
.10.1115/1.4035528
19.
Hodgins
,
D.
,
2008
, “
The Importance of Measuring Human Gait
,”
Med. Device Technol.
,
19
(
5
), pp.
42
44
.https://www.ncbi.nlm.nih.gov/pubmed/18947150
20.
Tahir
,
N. M.
, and
Manap
,
H. H.
,
2012
, “
Parkinson Disease Gait Classification Based on Machine Learning Approach
,”
J. Appl. Sci.
,
12
(
2
), pp.
180
185
.10.3923/jas.2012.180.185
21.
Yang
,
M.
,
Zheng
,
H.
,
Wang
,
H.
, and
McClean
,
S.
,
2009
, “
Feature Selection and Construction for the Discrimination of Neurodegenerative Diseases Based on Gait Analysis
,”
Third International Conference on Pervasive Computing Technologies for Healthcare
, London, UK, Apr. 1–3, pp.
1
7
.10.4108/ICST.PERVASIVEHEALTH2009.6053
22.
Serrao
,
M.
,
Chini
,
G.
,
Bergantino
,
M.
,
Sarnari
,
D.
,
Casali
,
C.
,
Conte
,
C.
,
Ranavolo
,
A.
,
Marcotulli
,
C.
,
Rinaldi
,
M.
,
Coppola
,
G.
,
Bini
,
F.
,
Pierelli
,
F.
, and
Marinozzi
,
F.
,
2018
, “
Identification of Specific Gait Patterns in Patients With Cerebellar Ataxia, Spastic Paraplegia, and Parkinson's Disease: A Non-Hierarchical Cluster Analysis
,”
Human Mov. Sci.
,
57
, pp.
267
279
.10.1016/j.humov.2017.09.005
23.
Serrao
,
M.
,
Chini
,
G.
,
Bergantino
,
M.
,
Sarnari
,
D.
,
Casali
,
C.
,
Conte
,
C.
,
Ranavolo
,
A.
,
Marcotulli
,
C.
,
Rinaldi
,
M.
,
Coppola
,
G.
,
Bini
,
F.
,
Pierelli
,
F.
, and
Marinozzi
,
F.
,
2018
, “
Dataset on Gait Patterns in Degenerative Neurological Diseases
,”
Data Brief
,
16
, pp.
806
816
.10.1016/j.dib.2017.12.022
24.
Ren
,
L.
,
Jones
,
R. K.
, and
Howard
,
D.
,
2007
, “
Predictive Modelling of Human Walking Over a Complete Gait Cycle
,”
J. Biomech.
,
40
(
7
), pp.
1567
1574
.10.1016/j.jbiomech.2006.07.017
25.
Mannini
,
A.
, and
Sabatini
,
A. M.
,
2014
, “
Walking Speed Estimation Using Foot-Mounted Inertial Sensors: Comparing Machine Learning and Strap-Down Integration Methods
,”
Med. Eng. Phys.
,
36
(
10
), pp.
1312
1321
.10.1016/j.medengphy.2014.07.022
26.
Williamson
,
R.
, and
Andrews
,
B. J.
,
2000
, “
Gait Event Detection for FES Using Accelerometers and Supervised Machine Learning
,”
IEEE Trans. Rehabil. Eng.
,
8
(
3
), pp.
312
319
.10.1109/86.867873
27.
Aertbeliën
,
E.
, and
De Schutter
,
J.
,
2014
, “
Learning a Predictive Model of Human Gait for the Control of a Lower-Limb Exoskeleton
,”
Fifth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics
, Sao Paulo, Brazil, Aug. 12–15, pp.
520
525
.10.1109/BIOROB.2014.6913830
28.
Luu
,
T. P.
,
Lim
,
H. B.
,
Hoon
,
K. H.
,
Qu
,
X.
, and
Low
,
K.
,
2011
, “
Subject-Specific Gait Parameters Prediction for Robotic Gait Rehabilitation Via Generalized Regression Neural Network
,”
IEEE International Conference on Robotics and Biomimetics
, Karon Beach, Phuket, Thailand, Dec. 7–11, pp.
914
919
.10.1109/ROBIO.2011.6181404
29.
Yun
,
Y.
,
Kim
,
H.-C.
,
Shin
,
S. Y.
,
Lee
,
J.
,
Deshpande
,
A. D.
, and
Kim
,
C.
,
2014
, “
Statistical Method for Prediction of Gait Kinematics With Gaussian Process Regression
,”
J. Biomech.
,
47
(
1
), pp.
186
192
.10.1016/j.jbiomech.2013.09.032
30.
Jolliffe
,
I.
,
2011
,
Principal Component Analysis
,
Springer-Verlag, New York.
31.
Fushiki
,
T.
,
2011
, “
Estimation of Prediction Error by Using K-Fold Cross-Validation
,”
Stat. Comput.
,
21
(
2
), pp.
137
146
.10.1007/s11222-009-9153-8
32.
Han
,
S.
,
Qubo
,
C.
, and
Meng
,
H.
,
2012
, “
Parameter Selection in SVM With RBF Kernel Function
,”
World Automation Congress
, Puerto Vallarta, Mexico, June 24–28, pp.
1
4
. https://ieeexplore.ieee.org/document/6321759
33.
Amari
,
S.-I.
, and
Wu
,
S.
,
1999
, “
Improving Support Vector Machine Classifiers by Modifying Kernel Functions
,”
Neural Networks
,
12
(
6
), pp.
783
789
.10.1016/S0893-6080(99)00032-5
34.
Haykin
,
S.
,
1994
,
Neural Networks
,
2
,
Prentice Hall
,
New York
.
35.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” arXiv preprint
arXiv:1412.6980.
https://arxiv.org/pdf/1412.6980.pdf
36.
Li
,
Y.
, and
Yuan
,
Y.
,
2017
, “
Convergence Analysis of Two-Layer Neural Networks With ReLU Activation
,”
Adv. Neural Inf. Process. Syst.
, pp.
597
607
.https://papers.nips.cc/paper/6662-convergence-analysis-of-two-layer-neural-networks-with-relu-activation.pdf
37.
Van der Aalst
,
W. M.
,
Rubin
,
V.
,
Verbeek
,
H.
,
van Dongen
,
B. F.
,
Kindler
,
E.
, and
Günther
,
C. W.
,
2010
, “
Process Mining: A Two-Step Approach to Balance Between Underfitting and Overfitting
,”
Software Syst. Model.
,
9
(
1
), p.
87
.10.1007/s10270-008-0106-z
38.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “
Auto-Encoding Variational Bayes
,” Proceedings of the 2nd International Conference on Learning Representations (ICLR), Banff, AB, Canada, Apr. 14–16.
39.
Kullback
,
S.
, and
Leibler
,
R. A.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Stat.
,
22
(
1
), pp.
79
86
.10.1214/aoms/1177729694
40.
Radford
,
A.
,
Metz
,
L.
, and
Chintala
,
S.
,
2016
, “
Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks
,” Comp. Res. Reposit.
You do not currently have access to this content.