Abstract

Deep-hole bone drilling is critical in many surgical implantation procedures. Unlike most common bone-drilling processes, deep-hole bone drilling is performed using a high drilling depth to drill-bit diameter ratio, which can lead to undesirable mechanical and thermal damage during surgical procedures. The objective of this study was to investigate the thrust force and torque generated in deep-hole bone drilling. Drilling tests were performed on bovine cortical bones at a drilling hole depth of 36 mm using a 2.5 mm diameter twist drill bit with a spindle speed of 3000 rpm and feed rates of 0.05, 0.075, and 0.1 mm/rev. Bone chips were collected at different depths and examined using a fiber-optic microscope. Not only are drilling forces a good indicator to assess drilling performances but also chip formation and morphology are important aspects for understanding bone-drilling behaviors. The force signals revealed two distinct states, which were referred to as normal and abnormal states in this study. In the normal state, the force signals remained constant once the drill tip became fully engaged in bone cutting, whereas after a certain drilling depth, the forces considerably increased in the abnormal state. The results of this study indicate that the rapid increase in the force in the abnormal state is mainly attributed to chip clogging inside the flutes as the drilling depth increases. This study also demonstrated that the chip morphology varies with respect to drilling depth, where fragmented chips are produced at shallow drilling depths and powdery chips are produced at deeper drilling depths.

References

References
1.
Kim
,
D. W.
,
Lee
,
Y. S.
,
Park
,
M. S.
, and
Chu
,
C. N.
,
2009
, “
Tool Life Improvement by Peck Drilling and Thrust Force Monitoring During Deep-Micro-Hole Drilling of Steel
,”
Int. J. Mach. Tool Manuf.
,
49
(
3–4
), pp.
246
255
.10.1016/j.ijmachtools.2008.11.005
2.
Friedland
,
D. R.
, and
Runge-Samuelson
,
C.
,
2009
, “
Soft Cochlear Implantation: Rationale for the Surgical Approach
,”
Trends Amplif.
,
13
(
2
), pp.
124
138
.10.1177/1084713809336422
3.
Hsieh
,
H. S.
,
Wu
,
C. M.
,
Zhuo
,
M. Y.
,
Yang
,
C. H.
, and
Hwang
,
C. F.
,
2015
, “
Intraoperative Facial Nerve Monitoring During Cochlear Implant Surgery
,”
Medicine
,
94
(
4
), p.
e456
.10.1097/MD.0000000000000456
4.
Majdani
,
O.
,
Rau
,
T. S.
,
Baron
,
S.
,
Eilers
,
H.
,
Baier
,
C.
,
Heimann
,
B.
,
Ortmaier
,
T.
,
Bartling
,
S.
,
Lenarz
,
T.
, and
Leinung
,
M.
,
2009
, “
A Robot-Guided Minimally Invasive Approach for Cochlear Implant Surgery: Preliminary Results of a Temporal Bone Study
,”
Int. J. CARS
,
4
(
5
), pp.
475
486
.10.1007/s11548-009-0360-8
5.
Kobler
,
J. P.
,
Wall
,
S.
,
Lexow
,
G. J.
,
Lang
,
C. P.
,
Majdani
,
O.
,
Kahrs
,
L. A.
, and
Ortmaier
,
T.
,
2015
, “
An Experimental Evaluation of Loads Occurring During Guided Drilling for Cochlear Implantation
,”
Int. J. CARS
,
10
(
10
), pp.
1625
1637
.10.1007/s11548-015-1153-x
6.
Imran
,
M.
,
Mativenga
,
P. T.
,
Kannan
,
S.
, and
Novovic
,
D.
,
2008
, “
An Experimental Investigation of Deep-Hole Microdrilling Capability for a Nickel-Based Superalloy
,”
Proc. IMechE Part B
,
222
(
12
), pp.
1589
1596
.10.1243/09544054JEM1217
7.
Mellinger
,
J. C.
,
Ozdoganlar
,
O. B.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2002
, “
Modeling Chip-Evacuation Forces and Prediction of Chip-Clogging in Drilling
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
605
614
.10.1115/1.1473146
8.
Heinemann
,
R.
,
Hinduja
,
S.
,
Barrow
,
G.
, and
Petuelli
,
G.
,
2006
, “
Effect of MQL on the Tool Life of Small Twist Drills in Deep-Hole Drilling
,”
Int. J. Mach. Tool Manuf.
,
46
(
1
), pp.
1
6
.10.1016/j.ijmachtools.2005.04.003
9.
Heinemann
,
R.
,
Hinduja
,
S.
,
Barrow
,
G.
, and
Petuelli
,
G.
,
2006
, “
The Performance of Small Diameter Twist Drills in Deep-Hole Drilling
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
884
892
.10.1115/1.2335859
10.
Lee
,
J. E.
,
Gozen
,
A.
, and
Ozdoganlar
,
O. B.
,
2012
, “
Modeling and Experimentation of Bone Drilling Forces
,”
J. Biomech.
,
45
(
6
), pp.
1076
1083
.10.1016/j.jbiomech.2011.12.012
11.
Wang
,
W.
,
Shi
,
Y.
,
Yang
,
N.
, and
Yuan
,
X.
,
2014
, “
Experimental Analysis of Drilling Process in Cortical Bone
,”
Med. Eng. Phys.
,
36
(
2
), pp.
261
266
.10.1016/j.medengphy.2013.08.006
12.
Dillon
,
N. P.
,
Kratchman
,
L. B.
,
Dietrich
,
M. S.
,
Labadie
,
R. F.
,
Webster
,
R. J.
, and
Withrow
,
T. J.
,
2013
, “
An Experimental Evaluation of the Force Requirements for Robotic Mastoidectomy
,”
Otol. Neurotol.
,
34
(
7
), pp.
93
102
.10.1097/MAO.0b013e318291c76b
13.
Lee
,
J. E.
,
Chavez
,
C. L.
, and
Park
,
J.
,
2018
, “
Parameters Affecting Mechanical and Thermal Responses in Bone Drilling: A Review
,”
J. Biomech.
,
71
, pp.
4
21
.10.1016/j.jbiomech.2018.02.025
14.
Staroveski
,
T.
,
Brezak
,
D.
, and
Udiljak
,
T.
,
2015
, “
Drill Wear Monitoring in Cortical Bone Drilling
,”
Med. Eng. Phys.
,
37
(
6
), pp.
560
566
.10.1016/j.medengphy.2015.03.014
15.
Cseke
,
A.
, and
Heinemann
,
R.
,
2018
, “
The Effects of Cutting Parameters on Cutting Forces and Heat Generation When Drilling Animal Bone and Biomechanical Test Materials
,”
Med. Eng. Phys.
,
51
, pp.
24
30
.10.1016/j.medengphy.2017.10.009
16.
Lee
,
J. E.
,
Rabin
,
Y.
, and
Ozdoganlar
,
O. B.
,
2011
, “
A New Thermal Model for Bone Drilling With Applications to Orthopaedic Surgery
,”
Med. Eng. Phys.
,
33
(
10
), pp.
1234
1244
.10.1016/j.medengphy.2011.05.014
17.
Akhbar
,
M. F. A.
, and
Yusoff
,
A. R.
,
2019
, “
Drilling of Bone: Effect of Drill Bit Geometries on Thermal Osteonecrosis Risk Regions
,”
Proc. IMechE Part H
,
233
(
2
), pp.
207
218
.10.1177/0954411918819113
18.
Alam
,
K.
,
Ghodsi
,
M.
,
Al-Shabibi
,
A.
, and
Silberschmidt
,
V.
,
2018
, “
Experimental Study on the Effect of Point Angle on Force and Temperature in Ultrasonically Assisted Bone Drilling
,”
J. Med. Biol. Eng.
,
38
(
2
), pp.
236
243
.10.1007/s40846-017-0291-8
19.
Lee
,
J. E.
,
Ozdoganlar
,
O. B.
, and
Rabin
,
Y.
,
2012
, “
An Experimental Investigation on Thermal Exposure During Bone Drilling
,”
Med. Eng. Phys.
,
34
(
10
), pp.
1510
1520
.10.1016/j.medengphy.2012.03.002
20.
Wang
,
J.
, and
Zhang
,
Q.
,
2008
, “
A Study of High-Performance Plane Rake Faced Twist Drills—Part 1: Geometrical Analysis and Experimental Investigation
,”
Int. J. Mach. Tool Manuf.
,
48
(
11
), pp.
1276
1285
.10.1016/j.ijmachtools.2008.03.005
21.
Mellinger
,
J. C.
,
Ozdoganlar
,
O. B.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
Modeling Chip-Evacuation Forces in Drilling for Various Flute Geometries
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
405
415
.10.1115/1.1578671
22.
Rahim
,
E. A.
, and
Sasahara
,
H.
,
2011
, “
A Study of the Effect of Palm Oil as MQL Lubricant on High Speed Drilling of Titanium Alloys
,”
Tribol. Int.
,
44
(
3
), pp.
309
317
.10.1016/j.triboint.2010.10.032
23.
Liao
,
Z.
, and
Axinte
,
D.
,
2016
, “
On Monitoring Chip Formation, Penetration Depth and Cutting Malfunctions in Bone Micro-Drilling Via Acoustic Emission
,”
J. Mater. Process. Technol.
,
229
, pp.
82
93
.10.1016/j.jmatprotec.2015.09.016
24.
Jacobs
,
C. H.
,
Berry
,
J. T.
,
Pope
,
M. H.
, and
Hoaglund
,
F. T.
,
1976
, “
A Study of the Bone Machining Process-Drilling
,”
J. Biomech.
,
9
(
5
), pp.
334
344
.10.1016/0021-9290(76)90056-7
25.
Wiggins
,
K. L.
, and
Malkin
,
S.
,
1978
, “
Orthogonal Machining of Bone
,”
ASME J. Biomech. Eng.
,
100
(
3
), pp.
122
130
.10.1115/1.3426202
26.
Šišljagić
,
V.
,
Jovanović
,
S.
,
Mrčela
,
T.
,
Nikolić
,
V.
,
Radić
,
R.
,
Wertheimer
,
V.
,
Kovac
,
T.
, and
Mrčela
,
M.
,
2010
, “
Applicability of Bovine Tibia as a Model in Research on Various Osterosynthesis Techniques
,”
Period. Biol.
,
112
(
1
), pp.
59
62
.https://www.semanticscholar.org/paper/Applicability-of-bovine-tibia-as-a-model-in-on-%C5%A0i%C5%A1ljagi%C4%87-Jovanovic/82c2d9a1650e7ec824f99bc1b8c3ab9a004cff2e
27.
Currey
,
J. D.
,
2013
,
Bones: Structure and Mechanics
,
Princeton University Press
,
Princeton, NJ
.
28.
Lee
,
J. E.
,
Huh
,
S. J.
, and
Lee
,
H. J.
,
2018
, “
Experimental Determination of Thermal Conductivity of Cortical Bone by Compensating Heat Loss in Parallel Plate Method
,”
Int. J. Precis. Eng. Manuf.
,
19
(
4
), pp.
569
576
.10.1007/s12541-018-0069-0
29.
Sedlin
,
E. D.
, and
Hirsch
,
C.
,
1966
, “
Factors Affecting the Determination of the Physical Properties of Femoral Cortical Bone
,”
Acta Orthop. Scand.
,
37
(
1
), pp.
29
48
.10.3109/17453676608989401
30.
Alam
,
K.
,
Mitrofanov
,
A. V.
, and
Silberschmidt
,
V. V.
,
2011
, “
Experimental Investigations of Forces and Torque in Conventional and Ultrasonically-Assisted Drilling of Cortical Bone
,”
Med. Eng. Phys.
,
33
(
2
), pp.
234
239
.10.1016/j.medengphy.2010.10.003
31.
Furness
,
R. J.
,
Ulsoy
,
A. G.
, and
Wu
,
C. L.
,
1996
, “
Supervisory Control of Drilling
,”
ASME J. Eng. Ind.
,
118
(
1
), pp.
10
19
.10.1115/1.2803630
32.
Farid
,
A. A.
,
Sharif
,
S.
, and
Idris
,
M. H.
,
2011
, “
Chip Morphology Study in High Speed Drilling of Al-Si Alloy
,”
Int. J. Adv. Manuf. Technol.
,
57
(
5–8
), pp.
555
564
.10.1007/s00170-011-3325-3
33.
Wang
,
C.
,
Xie
,
Y.
,
Zheng
,
L.
,
Qin
,
Z.
,
Tang
,
D.
, and
Song
,
Y.
,
2014
, “
Research on the Chip Formation Mechanism During the High-Speed Milling of Hardened Steel
,”
Int. J. Mach. Tool Manuf.
,
79
, pp.
31
48
.10.1016/j.ijmachtools.2014.01.002
34.
Batzer
,
S. A.
,
Haan
,
D. M.
,
Rao
,
P. D.
,
Olson
,
W. W.
, and
Sutherland
,
J. W.
,
1998
, “
Chip Morphology and Hole Surface Texture in the Drilling of Cast Aluminum Alloys
,”
J. Mater. Process. Technol.
,
79
(
1–3
), pp.
72
78
.10.1016/S0924-0136(97)00324-5
35.
Barry
,
J.
, and
Byrne
,
G.
,
2002
, “
The Mechanisms of Chip Formation in Machining Hardened Steels
,”
ASME J. Manuf. Sci. Eng. Trans.
,
124
(
3
), pp.
528
535
.10.1115/1.1455643
36.
Ke
,
F.
,
Ni
,
J.
, and
Stephenson
,
D. A.
,
2006
, “
Chip Thickening in Deep-Hole Drilling
,”
Int. J. Mach. Tool Manuf.
,
46
(
12–13
), pp.
1500
1507
.10.1016/j.ijmachtools.2005.09.022
37.
Okushima
,
K.
,
Hoshi
,
T.
, and
Fujinawa
,
T.
,
1960
, “
On the Behaviour of Chip in Steel Cutting—Part 2: In the Case of Parallel Type Chip Breaker
,”
Bull. JSME
,
3
(
10
), pp.
199
205
.10.1299/jsme1958.3.199
38.
Heinemann
,
R.
, and
Hinduja
,
S.
,
2012
, “
A New Strategy for Tool Condition Monitoring of Small Diameter Twist Drills in Deep-Hole Drilling
,”
Int. J. Mach. Tool Manuf.
,
52
(
1
), pp.
69
76
.10.1016/j.ijmachtools.2011.09.002
39.
Spur
,
G.
, and
Masuha
,
J. R.
,
1981
, “
Drilling With Twist Drills of Different Cross Section Profiles
,”
CIRP Ann.
,
30
(
1
), pp.
31
35
.10.1016/S0007-8506(07)60890-7
40.
Masuzawa
,
T.
,
Tsukamoto
,
J.
, and
Fujino
,
M.
,
1989
, “
Drilling of Deep Microholes by EDM
,”
CIRP Ann.
,
38
(
1
), pp.
195
198
.10.1016/S0007-8506(07)62683-3
41.
Tai
,
B. L.
,
Stephenson
,
D. A.
,
Furness
,
R. J.
, and
Shih
,
A. J.
,
2014
, “
Minimum Quantity Lubrication (MQL) in Automotive Powertrain Machining
,”
Procedia CIRP
,
14
, pp.
523
328
.10.1016/j.procir.2014.03.044
42.
Biermann
,
D.
,
Iovkov
,
I.
,
Blum
,
H.
,
Rademacher
,
A.
,
Taebi
,
K.
,
Suttmeier
,
F. T.
, and
Klein
,
N.
,
2012
, “
Thermal Aspects in Deep-Hole Drilling of Aluminium Cast Alloy Using Twist Drills and MQL
,”
Procedia CIRP
,
3
, pp.
245
250
.10.1016/j.procir.2012.07.043
43.
Soriano
,
J.
,
Iriarte
,
L. M.
,
Eguren
,
J.
,
Aristimuno
,
P.
,
Garay
,
A.
, and
Arrazola
,
P. J.
,
2012
, “
Effects of Rotational Speed and Feed Rate on Temperature Rise, Feed Force and Cutting Torque When Drilling Bovine Cortical Bone
,”
AIP Conf. Proc.
,
1431
, pp.
408
416
.10.1063/1.4707590
You do not currently have access to this content.