Abstract

Dental implants are surgically implanted into the patient's jaw to replace a missing tooth. The implant should have adequate time to integrate with bone before being subjected to masticatory force to avoid early failure. Resonance frequency analysis (RFA) is one of the approaches for determining an implant system's primary stability in terms of micromotion. This research aims to create a two degrees-of-freedom (DOF) mathematical model for dental prostheses based on the vibroacoustic RFA approach. In vibroacoustic system, a loudspeaker or buzzer is used as an input and the displacement of implant is measured using RFA. A sinusoidal force is used which produces a combination of translational and rotational motion of the implant system. While adjusting the input frequency from 4000 to 12,000 Hz, is used with the help of matlab which later computes the implant system's subsequent micromotion and resonance frequency. matlab is used to visualize the resonance frequency, which is 6658.38 Hz in case of rotational motion and 8138 Hz in translational motion. The micromotion was 1.2692 × 10−11 m in case of translational motion and 6.91088 × 10−9 radians in case of rotational motion. When there is less micromotion, a higher resonance frequency suggests more excellent osseointegration. For the evaluation of implant stability, a mathematical model is a primary approach that can be implemented to design a stability device using vibroacoustic RFA.

References

1.
Ouldyerou
,
A.
,
Merdji
,
A.
,
Aminallah
,
L.
,
Roy
,
S.
,
Mehboob
,
H.
, and
Özcan
,
M.
,
2022
, “
Biomechanical Performance of Ti-PEEK Dental Implants in Bone: An In-Silico Analysis
,”
J. Mech. Behav. Biomed. Mater.
,
134
, p.
105422
.10.1016/j.jmbbm.2022.105422
2.
Gao
,
X.
,
Fraulob
,
M.
, and
Haïat
,
G.
,
2019
, “
Biomechanical Behaviours of the Bone – Implant Interface: A Review
,”
J. R. Soc. Interface
,
16
(
156
), p.
20190259
.10.1098/rsif.2019.0259
3.
Dhatrak
,
P.
,
Shirsat
,
U.
,
Sumanth
,
S.
, and
Deshmukh
,
V.
,
2018
, “
Finite Element Analysis and Experimental Investigations on Stress Distribution of Dental Implants Around Implant-Bone Interface
,”
Mater. Today Proc.
,
5
(
2
), pp.
5641
5648
.10.1016/j.matpr.2017.12.157
4.
Dhatrak
,
P.
,
Shirsat
,
U.
, and
Deshmukh
,
V.
,
2015
, “
Fatigue Life Prediction of Commercial Dental Implants Based on Biomechanical Parameters: A Review
,”
J. Mater. Sci. Sur. Eng.
,
3
(
2
), pp.
221
226
.https://www.jmsse.in/files/323pankaj%20et.%20al.pdf
5.
Kittur
,
N.
,
Oak
,
R.
,
Dekate
,
D.
,
Jadhav
,
S.
, and
Dhatrak
,
P.
,
2021
, “
Dental Implant Stability and Its Measurements to Improve Osseointegration at the Bone-Implant Interface: A Review
,”
Mater. Today Proc.
,
43
(
2
), pp.
1064
1070
.10.1016/j.matpr.2020.08.243
6.
Pérez
,
M. A.
,
Moreo
,
P.
,
García-Aznar
,
J. M.
, and
Doblaré
,
M.
,
2008
, “
Computational Simulation of Dental Implant Osseointegration Through Resonance Frequency Analysis
,”
J. Biomech.
,
41
(
2
), pp.
316
325
.10.1016/j.jbiomech.2007.09.013
7.
Swami
,
V.
,
Vijayaraghavan
,
V.
, and
Swami
,
V.
,
2016
, “
Current Trends to Measure Implant Stability
,”
J. Indian Prosthodont. Soc.
,
16
(
2
), pp.
124
130
.10.4103/0972-4052.176539
8.
Ouldyerou
,
A.
,
Merdji
,
A.
,
Aminallah
,
L.
,
Msomi
,
V.
,
Chong
,
P. L.
, and
Roy
,
S.
,
2022
, “
Biomechanical Evaluation of Marginal Bone Loss in the Surrounding Bone Under Different Loading: 3D Finite Element Analysis Study
,”
Int. J. Multiscale Comput. Eng.
,
20
(
4
), pp.
43
56
.10.1615/IntJMultCompEng.2022043707
9.
Ashrafi
,
M.
,
Ghalichi
,
F.
,
Mirzakouchaki
,
B.
,
Arruga
,
A.
, and
Doblare
,
M.
,
2020
, “
Finite Element Comparison of the Effect of Absorbers' Design in the Surrounding Bone of Dental Implants
,”
Int. J. Numer. Method. Biomed. Eng.
,
36
(
1
), pp.
1
14
.10.1002/cnm.3270
10.
Ouldyerou
,
A.
,
Mehboob
,
H.
,
Merdji
,
A.
,
Aminallah
,
L.
,
Mehboob
,
A.
, and
Mukdadi
,
O. M.
,
2022
, “
Biomechanical Analysis of Printable Functionally Graded Material (FGM) Dental Implants for Different Bone Densities
,”
Comput. Biol. Med.
,
150
, p.
106111
.10.1016/j.compbiomed.2022.106111
11.
Chang
,
C. L.
,
Chen
,
C. S.
,
Huang
,
C. H.
, and
Hsu
,
M. L.
,
2012
, “
Finite Element Analysis of the Dental Implant Using a Topology Optimization Method
,”
Med. Eng. Phys.
,
34
(
7
), pp.
999
1008
.10.1016/j.medengphy.2012.06.004
12.
Bhattacharyya
,
S.
,
Choudhury
,
S.
,
Datta
,
P.
,
Pal
,
A. K.
,
Roy
,
S.
,
Chatterjee
,
R.
,
De
,
R.
,
Chakraborty
,
A.
,
Saha
,
S.
, and
Chowdhury
,
A. R.
,
2021
, “
Assessment of Jaw Bone Quality for Designing Patient-Specific Dental Implant Using Computed Tomography Data
,”
J. Long. Term. Eff. Med. Implants
,
31
(
1
), pp.
49
58
.10.1615/JLongTermEffMedImplants.2021036995
13.
Dommeti
,
V. K.
,
Pramanik
,
S.
, and
Roy
,
S.
,
2022
, “
Influence of Hydroxyapatite Composite Coating on the Textured Surface of Patient Specific Dental Implant: An In Silico 3D Finite Element Study
,”
Mech. Adv. Mater. Struct.
,
29
(
25
), pp.
1
9
.10.1080/15376494.2022.2116760
14.
Gupta
,
Y.
,
Iyer
,
R.
,
Dommeti
,
V. K.
,
Nutu
,
E.
,
Rana
,
M.
,
Merdji
,
A.
,
Biswas
,
J. K.
, and
Roy
,
S.
,
2021
, “
Design of Dental Implant Using Design of Experiment and Topology Optimization: A Finite Element Analysis Study
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
235
(
2
), pp.
157
166
.10.1177/0954411920967146
15.
Roy
,
S.
,
Dey
,
S.
,
Khutia
,
N.
,
Chowdhury
,
A. R.
, and
Datta
,
S.
,
2018
, “
Design of Patient Specific Dental Implant Using FE Analysis and Computational Intelligence Techniques
,”
Appl. Soft Comput. J.
,
65
, pp.
272
279
.10.1016/j.asoc.2018.01.025
16.
Dommeti
,
V. K.
,
Pramanik
,
S.
, and
Roy
,
S.
,
2021
, “
Mechanical Response of Different Types of Surface Texture for Medical Application Using Finite Element Study
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
235
(
6
), pp.
717
725
.10.1177/09544119211002722
17.
Dávila
,
E.
,
Ortiz-Hernández
,
M.
,
Perez
,
R. A.
,
Herrero-Climent
,
M.
,
Cerrolaza
,
M.
, and
Gil
,
F. J.
,
2019
, “
Crestal Module Design Optimization of Dental Implants: Finite Element Analysis and In Vivo Studies
,”
J. Mater. Sci. Mater. Med.
,
30
(
8
), pp.
1
10
.10.1007/s10856-019-6291-1
18.
Cheng
,
Y. C.
,
Jiang
,
C. P.
, and
Lin
,
D. H.
,
2019
, “
Finite Element Based Optimization Design for a One-Piece Zirconia Ceramic Dental Implant Under Dynamic Loading and Fatigue Life Validation
,”
Struct. Multidiscip. Optim.
,
59
(
3
), pp.
835
849
.10.1007/s00158-018-2104-2
19.
Shi
,
M.
,
Li
,
H.
, and
Liu
,
X.
,
2017
, “
Multidisciplinary Design Optimization of Dental Implant Based on Finite Element Method and Surrogate Models
,”
J. Mech. Sci. Technol.
,
31
(
10
), pp.
5067
5073
.10.1007/s12206-017-0955-x
20.
Roy
,
S.
,
Panda
,
D.
,
Khutia
,
N.
, and
Chowdhury
,
A. R.
,
2014
, “
Pore Geometry Optimization of Titanium (Ti6Al4V) Alloy, for Its Application in the Fabrication of Customized Hip Implants
,”
Int. J. Biomater.
,
2014
, pp.
1
12
.10.1155/2014/313975
21.
Ausiello
,
P.
,
Franciosa
,
P.
,
Martorelli
,
M.
, and
Watts
,
D. C.
,
2012
, “
Effects of Thread Features in Osseo-Integrated Titanium Implants Using a Statistics-Based Finite Element Method
,”
Dent. Mater.
,
28
(
8
), pp.
919
927
.10.1016/j.dental.2012.04.035
22.
Lin
,
C. L.
,
Yu
,
J. H.
,
Liu
,
H. L.
,
Lin
,
C. H.
, and
Lin
,
Y. S.
,
2010
, “
Evaluation of Contributions of Orthodontic Mini-Screw Design Factors Based on FE Analysis and the Taguchi Method
,”
J. Biomech.
,
43
(
11
), pp.
2174
2181
.10.1016/j.jbiomech.2010.03.043
23.
Jadhav
,
L.
,
Kapole
,
S.
,
Dhatrak
,
P.
, and
Palange
,
A.
,
2021
, “
Design of Experiments (DoE) Based Optimization of Dental Implants: A Review
,”
AIP Conf. Proc.
,
2358
(
040003
), p.
040003
.10.1063/5.0057944
24.
Kayabasi
,
O.
,
2020
, “
Design Methodology for Dental Implant Using Approximate Solution Techniques
,”
J. Stomatol. Oral Maxillofac. Surg.
,
121
(
6
), pp.
684
695
.10.1016/j.jormas.2020.01.003
25.
Dhatrak
,
P.
,
Girme
,
V.
,
Shirsat
,
U.
,
Sumanth
,
S.
, and
Deshmukh
,
V.
,
2019
, “
Significance of Orthotropic Material Models to Predict Stress Around Bone-Implant Interface Using Numerical Simulation
,”
Bionanoscience
,
9
(
3
), pp.
652
659
.10.1007/s12668-019-00649-5
26.
Joshi
,
S.
,
Bora
,
U.
,
Karnik
,
N.
,
Bhadri
,
K.
, and
Dhatrak
,
P.
,
2022
, “
Current and Emerging Technologies for Resonance Frequency Analysis-Based Devices for Measuring Dental Implant Stability: A Review
,”
Proceedings of Fourth International Conference on Inventive Material Science Applications, Advances in Sustainability Science and Technology
, Coimbatore, India, May 14–15, pp.
87
101
.10.1007/978-981-16-4321-7_8
27.
Zhuang
,
H. B.
,
Pan
,
M. C. H.
,
Chen
,
J. Z.
,
Wu
,
J. W.
, and
Chen
,
C. S.
,
2014
, “
A Noncontact Detection Technique for Interfacial Bone Defects and Osseointegration Assessment Surrounding Dental Implants
,”
Meas. J. Int. Meas. Confed.
,
55
, pp.
335
342
.10.1016/j.measurement.2014.05.039
28.
Charatchaiwanna
,
A.
,
Rojsiraphisa
,
T.
,
Aunmeungtong
,
W.
,
Reichart
,
P. A.
, and
Khongkhunthian
,
P.
,
2019
, “
Mathematical Equations for Dental Implant Stability Patterns During the Osseointegration Period, Based on Previous Resonance Frequency Analysis Studies
,”
Clin. Implant Dent. Relat. Res.
,
21
(
5
), pp.
1028
1040
.10.1111/cid.12828
29.
Argatov
,
I.
, and
Iantchenko
,
A.
,
2019
, “
A Simple Mathematical Model for the Resonance Frequency Analysis of Dental Implant Stability: Implant Clamping Quotient
,”
Mech. Res. Commun.
,
95
, pp.
67
70
.10.1016/j.mechrescom.2018.12.004
30.
Zanetti
,
E. M.
,
Pascoletti
,
G.
,
Calì
,
M.
,
Bignardi
,
C.
, and
Franceschini
,
G.
,
2018
, “
Clinical Assessment of Dental Implant Stability During Follow-Up: What is Actually Measured, and Perspectives
,”
Biosensors
,
8
(
3
), p.
68
.10.3390/bios8030068
31.
Lee
,
S.-Y.
,
Huang
,
H.-M.
,
Lin
,
C.-Y.
, and
Shih
,
Y.-H.
,
2000
, “
In Vivo and In Vitro Natural Frequency Analysis of Periodontal Conditions: An Innovative Method
,”
J. Periodontol.
,
71
(
4
), pp.
632
640
.10.1902/jop.2000.71.4.632
32.
Westover
,
L.
,
Faulkner
,
G.
,
Flores-Mir
,
C.
,
Hodgetts
,
W.
, and
Raboud
,
D.
,
2018
, “
Application of the Advanced System for Implant Stability Testing (ASIST) to Natural Teeth for Noninvasive Evaluation of the Tooth Root Interface
,”
J. Biomech.
,
69
(
69
), pp.
129
137
.10.1016/j.jbiomech.2018.01.023
33.
Harirforoush
,
R.
,
Arzanpour
,
S.
, and
Chehroudi
,
B.
,
2014
, “
The Effects of Implant Angulation on the Resonance Frequency of a Dental Implant
,”
Medical Eng. Phys.
,
36
(
8
), pp.
1024
1032
.10.1016/j.medengphy.2014.05.007
34.
Karnik
,
N.
,
Bhadri
,
K.
,
Bora
,
U.
,
Joshi
,
S.
, and
Dhatrak
,
P.
,
2021
, “
A Mathematical Model for Biomechanical Evaluation of Micro-Motion in Dental Prosthetics Using Vibroacoustic RFA
,”
J. Med. Biol. Eng.
,
41
(
4
), pp.
571
580
.10.1007/s40846-021-00636-w
35.
Özkal
,
F. M.
,
Cakir
,
F.
, and
Sensoz
,
E.
,
2020
, “
Schematization of Cannulated Screw Fixations in Femoral Neck Fractures Using Genetic Algorithm and Finite Element Method
,”
J. Med. Biol. Eng.
,
40
(
5
), pp.
673
687
.10.1007/s40846-020-00528-5
36.
Raffa
,
M. L.
,
Nguyen
,
V. H.
, and
Haiat
,
G.
,
2019
, “
Micromechanical Modeling of the Contact Stiffness of an Osseointegrated Bone-Implant Interface
,”
Biomed. Eng. Online
,
18
(
1
), pp.
1
18
.10.1186/s12938-019-0733-3
37.
Kayacan
,
R.
,
Ballarini
,
R.
, and
Mullen
,
R. L.
,
1997
, “
Theoretical Study of the Effects of Tooth and Implant Mobility Differences on Occlusal Force Transmission in Tooth/Implant-Supported Partial Prostheses
,”
J. Prosthet. Dent.
,
78
(
4
), pp.
391
399
.10.1016/S0022-3913(97)70047-7
38.
Westover
,
L.
,
Faulkner
,
G.
,
Hodgetts
,
W.
, and
Raboud
,
D.
,
2016
, “
Advanced System for Implant Stability Testing (ASIST)
,”
J. Biomech.
,
49
(
15
), pp.
3651
3659
.10.1016/j.jbiomech.2016.09.043
39.
Jokar
,
H.
,
Rouhi
,
G.
, and
Abolfathi
,
N.
,
2020
, “
The Effects of Splinting on the Initial Stability and Displacement Pattern of Periodontio-Integrated Dental Implants: A Finite Element Investigation
,”
J. Med. Biol. Eng.
,
40
(
5
), pp.
719
726
.10.1007/s40846-020-00544-5
40.
Thienkarochanakul
,
K.
,
Javadi
,
A. A.
,
Akrami
,
M.
,
Charnley
,
J. R.
, and
Benattayallah
,
A.
,
2020
, “
Stress Distribution of the Tibiofemoral Joint in a Healthy Versus Osteoarthritis Knee Model Using Image-Based Three-Dimensional Finite Element Analysis
,”
J. Med. Biol. Eng.
,
40
(
3
), pp.
409
418
.10.1007/s40846-020-00523-w
41.
Rittel
,
D.
,
Dorogoy
,
A.
,
Haïat
,
G.
, and
Shemtov-Yona
,
K.
,
2019
, “
Resonant Frequency Analysis of Dental Implants
,”
Med. Eng. Phys.
,
66
, pp.
65
74
.10.1016/j.medengphy.2019.02.008
42.
Ho
,
K. N.
,
Lee
,
S. Y.
, and
Huang
,
H. M.
,
2017
, “
Damping Ratio Analysis of Tooth Stability Under Various Simulated Degrees of Vertical Alveolar Bone Loss and Different Root Types
,”
Biomed. Eng. Online
,
16
(
1
), pp.
1
12
.10.1186/s12938-017-0388-x
43.
Huang
,
H. M.
,
Cheng
,
K. Y.
,
Chen
,
C. F.
,
Ou
,
K. L.
,
Lin
,
C. T.
, and
Lee
,
S. Y.
,
2005
, “
Design of a Stability-Detecting Device for Dental Implants
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
219
(
3
), pp.
203
211
.10.1243/095441105X9336
44.
Pan
,
M. C.
,
Wang
,
S. Y.
, and
Chen
,
C. S.
,
2021
, “
Handheld Device for Assessing Dental Implant Osseointegration Through the Vibro-Acoustic Technique
,”
Meas. J. Int. Meas. Confed.
,
169
, p.
108419
.10.1016/j.measurement.2020.108419
45.
Castellana
,
A.
,
Carullo
,
A.
,
Astolfi
,
A.
,
Puglisi
,
G. E.
, and
Fugiglando
,
U.
,
2017
, “
Intra-Speaker and Inter-Speaker Variability in Speech Sound Pressure Level Across Repeated Readings
,”
J. Acoust. Soc. Am.
,
141
(
4
), pp.
2353
2363
.10.1121/1.4979115
46.
Pan
,
M. C.
,
Lin
,
H. P.
, and
Chen
,
C. S.
,
2021
, “
Design/Exploration and Verification of an Electromagnetic Probe for Assessing Dental Implant Osseointegration
,”
Meas. J. Int. Meas. Confed.
,
174
, p.
109054
.10.1016/j.measurement.2021.109054
47.
Geckili
,
O.
,
Cilingir
,
A.
,
Bural
,
C.
,
Bilmenoglu
,
C.
, and
Bilhan
,
H.
,
2015
, “
Determination of the Optimum Torque to Tighten the Smartpegs of Magnetic Resonance Frequency Analyses Devices: An Ex Vivo Study
,”
J. Oral Implantol.
,
41
(
6
), pp.
e252
e256
.10.1563/aaid-joi-D-14-00266
48.
Khouja
,
N.
,
2017
, “
In Search of an Improved Methodology for Measuring Dental Implant Stability: Combining Experimental Model Analysis (EMA) and Finite Element Analysis (FEA) to Achieve Maximum Reliability
,” Ph.D. thesis,
University of Washington
, Seattle, WA.
49.
Aimoto
,
K.
,
Ota
,
S.
,
Hase
,
K.
,
Sakai
,
T.
,
Kodama
,
K.
, and
Nakamura
,
H.
,
2020
, “
Development of an Impulse Response Method for Assessing Knee Osteoarthritis at the Femorotibial Joint: Comparison Between Healthy Young Adults and Older Women With Clinical Knee Osteoarthritis
,”
J. Med. Biol. Eng.
,
40
(
1
), pp.
35
40
.10.1007/s40846-019-00484-9
50.
Canan
,
B.
,
Cagatay
,
D.
, and
Onur
,
G.
,
2020
, “
Initial Stability Measurements of Implants Using a New Magnetic Resonance Frequency Analyzer With Titanium Transducers: An Ex Vivo Study
,”
J. Oral Implantol.
,
46
(
1
), pp.
35
40
.10.1563/aaid-joi-D-19-00126
51.
Kästel
,
I.
,
de Quincey
,
G.
,
Neugebauer
,
J.
,
Sader
,
R.
, and
Gehrke
,
P.
,
2019
, “
Does the Manual Insertion Torque of Smartpegs Affect the Outcome of Implant Stability Quotients (ISQ) During Resonance Frequency Analysis (RFA)?
,”
Int. J. Implant Dent.
,
5
(
1
), pp.
1
7
.10.1186/s40729-019-0195-1
52.
Bataineh
,
A. B.
, and
Al-Dakes
,
A. M.
,
2016
, “
The Influence of Length of Implant on Primary Stability: An In Vitro Study Using Resonance Frequency Analysis
,”
J. Clin. Exp. Dent.
,
9
(
1
), pp.
e1
e6
.10.4317/jced.53302
53.
Sim
,
C. P. C.
, and
Lang
,
N. P.
,
2010
, “
Factors Influencing Resonance Frequency Analysis Assessed by OsstellTM Mentor During Implant Tissue Integration: I. Instrument Positioning, Bone Structure, Implant Length
,”
Clin. Oral Implants Res.
,
21
(
6
), pp.
598
604
.10.1111/j.1600-0501.2009.01878.x
54.
Huang
,
H. M.
,
Chiu
,
C. L.
,
Yeh
,
C. Y.
, and
Lee
,
S. Y.
,
2003
, “
Factors Influencing the Resonance Frequency of Dental Implants
,”
J. Oral Maxillofac. Surg.
,
61
(
10
), pp.
1184
1188
.10.1016/S0278-2391(03)00680-3
55.
Hansson
,
S.
,
Löberg
,
J.
,
Mattisson
,
I.
, and
Ahlberg
,
E.
,
2011
, “
Global Biomechanical Model for Dental Implants
,”
J. Biomech.
,
44
(
6
), pp.
1059
1065
.10.1016/j.jbiomech.2011.02.002
56.
Su
,
Y. H.
,
Peng
,
B. y.
,
Wang
,
P. D.
, and
Feng
,
S. W.
,
2020
, “
Evaluation of the Implant Stability and the Marginal Bone Level Changes During the First Three Months of Dental Implant Healing Process: A Prospective Clinical Study
,”
J. Mech. Behav. Biomed. Mater.
,
110
, p.
103899
.10.1016/j.jmbbm.2020.103899
You do not currently have access to this content.