Abstract

Dental implants have received a lot of attention and have been used to treat symptoms such as missing teeth and bad teeth. Due to the wide range of occupations and ages of patients, the functions and aims of implants are different. There are many kinds of dental implant shapes. However, with the popularity of dental implants, the problems caused by the some of the dental implant shapes have received much attention. In fact, some implants were used incorrectly. This makes the stress distribution around the implant unreasonable; it not only affects the surrounding bone resorption but also causes mechanical fracture of the implant. This work aims to evaluate the mechanical features of five different kinds of dental implant systems. By applying engineering systems of investigations such as FEM, five types of dental implants and surrounding bone tissue were modeled and simulated under vertical loads of 90 N. Distributions of stresses and deformations in the bone were obtained and ranked according to statistical scores, which were used to judge the optimum geometry of implants. The analytical results showed that the cylindrical implant is the most optimum shape among the other types of implants.

References

1.
Porter
,
J. A.
, and
Von Fraunhofer
,
J. A.
,
2005
, “
Success or Failure of Dental Implants? A Literature Review With Treatment Considerations
,”
Gen. Dent.
,
53
(
6
), pp.
423
432
.https://pubmed.ncbi.nlm.nih.gov/16366052/
2.
Iplikçioğlu
,
H.
, and
Akça
,
K.
,
2002
, “
Comparative Evaluation of the Effect of Diameter, Length and Number of Implants Supporting Three-Unit Fixed Partial Prostheses on Stress Distribution in the Bone
,”
J. Dent.
,
30
(
1
), pp.
41
46
.10.1016/S0300-5712(01)00057-4
3.
Roy
,
S.
,
Das
,
M.
,
Chakraborty
,
P.
,
Biswas
,
J. K.
,
Chatterjee
,
S.
,
Khutia
,
N.
,
Saha
,
S.
, and
Chowdhury
,
A. R.
,
2017
, “
Optimal Selection of Dental Implant for Different Bone Conditions Based on the Mechanical Response
,”
Acta Bioeng. Biomech.
,
19
(
2
), pp.
11
20
.https://pubmed.ncbi.nlm.nih.gov/28869633/
4.
Roy
,
S.
,
Panda
,
D.
,
Khutia
,
N.
, and
Chowdhury
,
A. R. C.
,
2014
, “
Pore Geometry Optimization of Titanium (Ti6Al4V) Alloy, for Its Application in the Fabrication of Customized Hip Implants
,”
Int. J. Biomater.
, 2014, Article No. 313975.10.1155/2014/313975
5.
Brunski
,
J. B.
,
Puleo
,
D. A.
, and
Nanci
,
A.
,
2000
, “
Biomaterials and Biomechanics of Oral and Maxillofacial Implants: Current Status and Future Developments
,”
Int. J. Oral Maxillofac. Implants
,
15
(
1
), pp.
15
46
.https://pubmed.ncbi.nlm.nih.gov/10697938/
6.
Zhou
,
Y.
,
Jiang
,
T.
,
Qian
,
M.
,
Zhang
,
X.
,
Wang
,
J.
,
Shi
,
B.
, and
Wang
,
Y.
,
2008
, “
Roles of Bone Scintigraphy and Resonance Frequency Analysis in Evaluating Osseointegration of Endosseous Implant
,”
Biomaterials
,
29
(
4
), pp.
461
74
.10.1016/j.biomaterials.2007.10.021
7.
Meredith
,
N.
,
1998
, “
Assessment of Implant Stability as a Prognostic Determinant
,”
Int. J. Prosthodontics
,
11
(
5
), pp.
491
501
.https://pubmed.ncbi.nlm.nih.gov/10697938/
8.
Calandriello
,
R.
, and
Tomatis
,
M.
,
2011
, “
Immediate Occlusal Loading of Single Lower Molars Using Brånemark System® Wide Platform Tiunite™ Implants: A 5‐Year Follow‐Up Report of a Prospective Clinical Multicenter Study
,”
Clin. Implant Dent. Relat. Res.
,
13
(
4
), pp.
311
318
.10.1111/j.1708-8208.2009.00214.x
9.
Lambert
,
F. E.
,
Weber
,
H. P.
,
Susarla
,
S. M.
,
Belser
,
U. C.
, and
Gallucci
,
G. O.
,
2009
, “
Descriptive Analysis of Implant and Prosthodontic Survival Rates With Fixed Implant–Supported Rehabilitations in the Edentulous Maxilla
,”
J. Periodontol.
,
80
(
8
), pp.
1220
30
.10.1902/jop.2009.090109
10.
Brunski
,
J. B.
,
1999
, “
In Vivo Bone Response to Biomechanical Loading at the Bone/Dental-Implant Interface
,”
Adv. Dent. Res.
,
13
(
1
), pp.
99
119
.10.1177/08959374990130012301
11.
Roy
,
S.
,
Dey
,
S.
,
Khutia
,
N.
,
Chowdhury
,
A. R.
, and
Datta
,
S.
,
2018
, “
Design of Patient Specific Dental Implant Using FE Analysis and Computational Intelligence Techniques
,”
Appl. Soft Comput.
,
65
, pp.
272
279
.10.1016/j.asoc.2018.01.025
12.
Boukhlif
,
A.
,
Merdji
,
A.
,
Roy
,
S.
,
Alkhaldi
,
H.
,
Abu-Alshaikh
,
I.
,
Della
,
N.
, and
Hillstrom
,
R.
,
2020
, “
Effect of Supporting Implants Inclination on Stability of Fixed Partial Denture: A Finite Element Study
,”
Proc. Inst. Mech. Eng.
,
234
(
10
), pp.
1162
71
.10.1177/0954411920944109
13.
Gupta
,
Y.
,
Iyer
,
R.
,
Dommeti
,
V. K.
,
Nutu
,
E.
,
Rana
,
M.
,
Merdji
,
A.
, and
Roy
,
S.
,
2021
, “
Design of Dental Implant Using Design of Experiment and Topology Optimization: A Finite Element Analysis Study
,”
Proc. Inst. Mech. Eng.
,
235
(
2
), pp.
157
66
.10.1177/0954411920967146
14.
Dommeti
,
V. K.
,
Pramanik
,
S.
, and
Roy
,
S.
,
2021
, “
Mechanical Response of Different Types of Surface Texture for Medical Application Using Finite Element Study
,”
Proc. Inst. Mech. Eng.
,
235
(
6
), pp.
717
25
.10.1177/09544119211002722
15.
de Kok
,
P.
,
Kleverlaan
,
C. J.
,
de Jager
,
N.
,
Kuijs
,
R.
, and
Feilzer
,
A. J.
,
2015
, “
Mechanical Performance of Implant-Supported Posterior Crowns
,”
J. Prosthet. Dent.
,
114
(
1
), pp.
59
66
.10.1016/j.prosdent.2014.10.015
16.
Schroeder
,
H. E.
,
1986
, “
Development, Structure, and Function of Periodontal Tissues
,”
The Periodontium
,
Springer
,
Berlin, Heidelberg
, pp.
23
323
.
17.
Lee
,
T. J.
,
Ueno
,
T.
,
Nomura
,
N.
,
Wakabayashi
,
N.
, and
Hanawa
,
T.
,
2016
, “
Titanium-Zirconium Binary Alloy as Dental Implant Material: Analysis of the Influence of Compositional Change on Mechanical Properties and In Vitro Biologic Response
,”
Int. J. Oral Maxillofac. Implants
,
31
(
3
), pp.
547
554
.10.11607/jomi.4349
18.
Bahrami
,
B.
,
Shahrbaf
,
S.
,
Mirzakouchaki
,
B.
,
Ghalichi
,
F.
,
Ashtiani
,
M.
, and
Martin
,
N.
,
2014
, “
Effect of Surface Treatment on Stress Distribution in Immediately Loaded Dental Implants—a 3D Finite Element Analysis
,”
Dent. Mater. J.
,
30
(
4
), pp.
e89
e97
.10.1016/j.dental.2014.01.012
19.
Merdji
,
A.
,
Taharou
,
B.
,
Hillstrom
,
R.
,
Benaissa
,
A.
,
Roy
,
S.
,
Chong
,
P. L.
, and
Bouiadjra
,
B. A. B.
,
2020
, “
Finite-Element Study of Biomechanical Explanations for Bone Loss Around Dental Implants
,”
J. Long Term Eff. Med. Implants
,
30
(
1
), pp.
21
30
.10.1615/JLongTermEffMedImplants.2020035028
20.
Bing
,
L.
,
Mito
,
T.
,
Yoda
,
N.
,
Sato
,
E.
,
Shigemitsu
,
R.
,
Han
,
J. M.
, and
Sasaki
,
K.
,
2020
, “
Effect of Peri‐Implant Bone Resorption on Mechanical Stress in the Implant Body: In Vivo Measured Load‐Based Finite Element Analysis
,”
J. Oral Rehabil.
,
47
(
12
), pp.
1566
–15
73
.10.1111/joor.13097
21.
Wang
,
S. H.
,
Shen
,
Y. W.
,
Fuh
,
L. J.
,
Peng
,
S. L.
,
Tsai
,
M. T.
,
Huang
,
H. L.
, and
Hsu
,
J. T.
,
2020
, “
Relationship Between Cortical Bone Thickness and Cancellous Bone Density at Dental Implant Sites in the Jawbone
,”
Diagnostics
,
10
(
9
), p.
710
.10.3390/diagnostics10090710
22.
Chang
,
H. S.
,
Chen
,
Y. C.
,
Hsieh
,
Y. D.
, and
Hsu
,
M. L.
,
2013
, “
Stress Distribution of Two Commercial Dental Implant Systems: A Three-Dimensional Finite Element Analysis
,”
J. Dent. Sci.
,
8
(
3
), pp.
261
271
.10.1016/j.jds.2012.04.006
23.
Cicciù
,
M.
,
Cervino
,
G.
,
Bramanti
,
E.
,
Lauritano
,
F.
,
Lo Gudice
,
G.
,
Scappaticci
,
L.
, and
Risitano
,
G.
,
2015
, “
FEM Analysis of Mandibular Prosthetic Overdenture Supported by Dental Implants: Evaluation of Different Retention Methods
,”
Comput. Math. Methods Med.
,
2015
, Article No. 943839.10.1155/2015/943839
24.
Steinemann
,
S. G.
,
1998
, “
Titanium–the Material of Choice?
,”
Periodontology
,
17
(
1
), pp.
7
21
.10.1111/j.1600-0757.1998.tb00119.x
You do not currently have access to this content.