Abstract

This study is being carried out to evaluate and compare the stress along the root surfaces of anterior maxillary dentition during retraction in labial and lingual mechanics with varying level of bone support. Eight three-dimensional finite element models (FEM) were created with normal periodontium and different levels of alveolar bone loss; four with labial brackets and four with lingual brackets. Sliding mechanics were simulated as en-masse retraction of the anterior dentition. The equivalent stresses along the roots of six anterior maxillary teeth were measured in all the models. Equivalent stresses generated at the root surfaces of central incisors are always higher in labial technique and of canines are always higher in lingual technique, suggesting the increased vulnerability toward root resorption in both cases. Stresses at the root apices of all the teeth are increasing progressively when the bone loss is progressively more than 2 mm in labial technique. In labial technique, the stresses at the root apices of all the teeth are increasing progressively when the bone loss is progressively more than 2 mm. In Lingual technique, equivalent stresses generated at the root surfaces of canines are more than central and lateral incisors irrespective of the alveolar bone loss, suggesting increased susceptibility to root resorption.

References

1.
Scuzzo
,
G.
, and
Takemoto
,
K.
,
2003
, “
Invisible Orthodontics: Biomechanics and Comparative Biomechanics
,”
Quintessenz Verlags GmbH
,
Berlin
, pp.
55
60
.
2.
Romano
,
R.
,
2006
, “
Concepts on Control of the Anterior Teeth Using the Lingual Appliance
,”
Semin. Orthod.
,
12
(
3
), pp.
178
185
.10.1053/j.sodo.2006.05.005
3.
Mahler
,
D. B.
, and
Peyton
,
F. A.
,
1955
, “
Photoelasticity as a Research Technique for Analyzing Stresses in Dental Structures
,”
J. Dent Res.
,
34
(
6
), pp.
831
838
.10.1177/00220345550340060601
4.
DeTolla
,
D. H.
,
Sebastiano
,
A.
,
Abani
,
P. A.
,
Buhite
,
R.
, and
Comella
,
B.
,
2000
, “
The Role of the Finite Element Model in Dental Implants
,”
J. Oral Implantol.
,
26
(
2
), pp.
77
81
.10.1563/1548-1336(2000)026<0077:TROTFE>2.3.CO;2
5.
McGuinness
,
N.
,
Wilson
,
A. N.
,
Jones
,
M.
,
Middleton
,
J.
, and
Robertson
,
N. R.
,
1992
, “
Stresses Induced by Edgewise Appliances in the Periodontal Ligament-A Finite Element Study
,”
Angle Orthod.
,
62
(
1
), pp.
15
22
.10.1043/0003-3219(1992)062<0015:SIBEAI>2.0.CO;2
6.
Tanne
,
K.
,
Sakuda
,
M.
, and
Burstone
,
C. J.
,
1987
, “
Three-Dimensional Finite Element Analysis for Stress in the Periodontal Tissue by Orthodontic Forces
,”
Am. J. Orthod. Dentofacial Orthop.
,
92
(
6
), pp.
499
505
.10.1016/0889-5406(87)90232-0
7.
Rudolph
,
D. J.
,
Willes
,
M. G.
, and
Sameshima
,
G. T.
,
2001
, “
A Finite Element Model of Apical Force Distribution From Orthodontic Tooth Movement
,”
Angle Orthod.
,
71
(
2
), pp.
127
131
.10.1043/0003-3219(2001)071<0127:AFEMOA>2.0.CO;2
8.
Kamble
,
R. H.
,
Lohkare
,
S.
,
Hararey
,
P. V.
, and
Mundada
,
R. D.
,
2012
, “
Stress Distribution Pattern in a Root of Maxillary Central Incisor Having Various Root Morphologies: A Finite Element Study
,”
Angle Orthodont.
,
82
(
5
), pp.
799
805
.10.2319/083111-560.1
9.
Liang
,
W.
,
Rong
,
Q.
,
Lin
,
J.
, and
Xu
,
B.
,
2009
, “
Torque Control of the Maxillary Incisors in Lingual and Labial Orthodontics: A 3-Dimensional Finite Element Analysis
,”
Am. J. Orthod. Dentofacial Orthop.
,
135
(
3
), pp.
316
322
.10.1016/j.ajodo.2007.03.039
10.
Boukhlif
,
A.
,
Merdji
,
A.
,
Roy
,
S.
,
Alkhaldi
,
H.
,
Abu-Alshaikh
,
I.
,
Della
,
N.
,
Cristache
,
C. M.
, and
Hillstrom
,
R.
,
2020
, “
Effect of Supporting Implants Inclination on Stability of Fixed Partial Denture: A Finite Element Study
,”
Proc. Inst. Mech. Eng. H
,
234
(
10
), pp.
1162
1171
.10.1177/0954411920944109
11.
Lombardo
,
L.
,
Scuzzo
,
G.
,
Arreghini
,
A.
,
Gorgun
,
Ö.
,
Ortan
,
Y. Ö.
, and
Siciliani
,
G.
,
2014
, “
3D FEM Comparison of Lingual and Labial Orthodontics in en Masse Retraction
,”
Prog. Orthod.
,
15
(
1
), pp.
1
12
.10.1186/s40510-014-0038-9
12.
Xia
,
Z.
,
Jiang
,
F.
, and
Chen
,
J.
,
2013
, “
Estimation of Periodontal Ligament's Equivalent Mechanical Parameters for Finite Element Modeling
,”
Am. J. Orthod. Dentofacial Orthop.
,
143
(
4
), pp.
486
491
.10.1016/j.ajodo.2012.10.025
13.
Kojima
,
Y.
, and
Fukui
,
H.
,
2014
, “
A Finite Element Simulation of Initial Movement, Orthodontic Movement, and the Centre of Resistance of the Maxillary Teeth Connected With an Archwire
,”
Eur. J. Orthod.
,
36
(
3
), pp.
255
261
.10.1093/ejo/cjr123
14.
Gupta
,
Y.
,
Iyer
,
R.
,
Dommeti
,
V. K.
,
Nutu
,
E.
,
Rana
,
M.
,
Merdji
,
A.
,
Biswas
,
J. K.
, and
Roy
,
S.
,
2021
, “
Design of Dental Implant Using Design of Experiment and Topology Optimization: A Finite Element Analysis Study
,”
Proc. Inst. Mech. Eng. H
,
235
(
2
), pp.
157
166
.10.1177/0954411920967146
15.
Choudhury
,
S.
,
Rana
,
M.
,
Chakraborty
,
A.
,
Majumder
,
S.
,
Roy
,
S.
,
RoyChowdhury
,
A.
, and
Datta
,
S.
,
2022
, “
Design of Patient Specific Basal Dental Implant Using Finite Element Method and Artificial Neural Network Technique
,”
Proc. Inst. Mech. Eng., Part H
,
236
(
9
), pp.
1375
1387
.10.1177/09544119221114729
16.
Ouldyerou
,
A.
,
Mehboob
,
H.
,
Merdji
,
A.
,
Aminallah
,
L.
,
Mehboob
,
A.
, and
Mukdadi
,
O. M.
,
2022
, “
Biomechanical Analysis of Printable Functionally Graded Material (FGM) Dental Implants for Different Bone Densities
,”
Comput. Biol. Med.
,
150
, p.
106111
.10.1016/j.compbiomed.2022.106111
17.
Ouldyerou
,
A.
,
Merdji
,
A.
,
Aminallah
,
L.
,
Roy
,
S.
,
Mehboob
,
H.
, and
Özcan
,
M.
,
2022
, “
Biomechanical Performance of Ti-PEEK Dental Implants in Bone: An in-Silico Analysis
,”
J. Mech. Behav. Biomed.
,
134
, p.
105422
.10.1016/j.jmbbm.2022.105422
18.
Ouldyerou
,
A.
,
Merdji
,
A.
,
Aminallah
,
L.
,
Mehboob
,
H.
,
Mehboob
,
A.
,
Roy
,
S.
,
Goswami
,
T.
,
Mukdadi
,
O. M.
, and
Tarlochan
,
F.
,
2023
, “
Functionally Graded Ceramics (FGC) Dental Abutment With Implant-Supported Cantilever Crown: Finite Element Analysis
,”
Compos. Commun.
,
38
, p.
101514
.10.1016/j.coco.2023.101514
19.
Ouldyerou
,
A.
,
Aminallah
,
L.
,
Merdji
,
A.
,
Mehboob
,
A.
, and
Mehboob
,
H.
,
2022
, “
Finite Element Analyses of Porous Dental Implant Designs Based on 3D Printing Concept to Evaluate Biomechanical Behaviors of Healthy and Osteoporotic Bones
,”
Mech. Adv. Mater. Struc.
, pp.
1
13
.10.1080/15376494.2022.2053908
20.
Ouldyerou
,
A.
,
Merdji
,
A.
,
Aminallah
,
L.
,
Msomi
,
V.
,
Chong
,
P. L.
, and
Roy
,
S.
,
2022
, “
Biomechanical Evaluation of Marginal Bone Loss in the Surrounding Bone Under Different Loading: 3d Finite Element Analysis Study
,”
Int. J. Multiscale Com.
,
20
(
4
), pp.
43
56
.10.1615/IntJMultCompEng.2022043707
21.
Staggers
,
J. A.
, and
Germane
,
N.
,
1991
, “
Clinical Considerations in the Use of Retraction Mechanics
,”
J. Clin. Orthod.
,
25
(
6
), pp.
364
369
.https://pubmed.ncbi.nlm.nih.gov/1939634/
22.
Kojima
,
Y.
,
Kawamura
,
J.
, and
Fukui
,
H.
,
2012
, “
Finite Element Analysis of the Effect of Force Directions on Tooth Movement in Extraction Space Closure With Miniscrew Sliding Mechanics
,”
Am. J. Orthod. Dentofacial Orthop.
,
142
(
4
), pp.
501
508
.10.1016/j.ajodo.2012.05.014
23.
Miura
,
F.
,
1975
, “
Effect of Orthodontic Force on Blood Circulation in Periodontal Membrane
,”
Transactions of the Third International Orthodontic Congress
,
The CV Mosby Company
,
Saint Louis, MO
, pp.
35
41
.
24.
Bouton
,
A.
,
Simon
,
Y.
,
Goussard
,
F.
,
Teresi
,
L.
, and
Sansalone
,
V.
,
2017
, “
New Finite Element Study Protocol: Clinical Simulation of Orthodontic Tooth Movement
,”
Int. Orthod.
,
15
(
2
), pp.
165
179
.10.1016/j.ortho.2017.03.001
25.
Lombardo
,
L.
,
Arreghini
,
A.
,
Al Ardha
,
K.
,
Scuzzo
,
G.
,
Takemoto
,
K.
, and
Siciliani
,
G.
,
2011
, “
Wire Load-Deflection Characteristics Relative to Different Types of Brackets
,”
Int. Orthod.
,
9
(
1
), pp.
120
139
.10.1016/j.ortho.2010.12.011
26.
Geramy
,
A.
,
2000
, “
Alveolar Bone Resorption and the Center of resistance modification (3-D Analysis by Means of the Finite Element Method)
,”
Am. J. Orthod. Dentofacial Orthop.
,
117
(
4
), pp.
399
405
.10.1016/S0889-5406(00)70159-4
27.
Zargham
,
A.
,
Geramy
,
A.
, and
Rouhi
,
G.
,
2016
, “
Evaluation of Long-Term Orthodontic Tooth Movement Considering Bone Remodeling Process and in the Presence of Alveolar Bone Loss Using Finite Element Method
,”
Orthod. Waves
,
75
(
4
), pp.
85
96
.10.1016/j.odw.2016.09.001
28.
Mehrotra
,
R.
,
Jaiswal
,
R. K.
,
Mehrotra
,
P.
,
Kapoor
,
S.
, and
Jain
,
A.
,
2015
, “
Evaluation of the Torque Control of the Maxillary Incisors in Lingual Orthodontics During Retraction: A Finite-Element Analysis
,”
J. Indian Orthod. Soc.
,
49
(
4
), pp.
183
187
.10.4103/0301-5742.171304
29.
Schwarz
,
A. M.
,
1932
, “
Tissue Changes Incidental to Orthodontic Tooth Movement
,”
Int. J. Orthod. Oral Surg. Radiogr.
,
18
(
4
), pp.
331
352
.10.1016/S0099-6963(32)80074-8
You do not currently have access to this content.