Abstract

Severe cervical spine injuries are rare in an automobile crash, however, the recovery for an individual is difficult. With no suitable surrogate in the laboratory setting, the exact head-neck (HN) response to severe impact accelerations is unknown. Therefore, this study aimed to develop a nonhuman primate (NHP) HN model and validate it using a historic NHP kinematic dataset that tested noninjury, as well as injury-inducing impact accelerations. The geometry of the NHP HN model was constructed from a previously CT-scanned skeleton and idealized as a two-dimensional quadrilateral shell mesh. Inertial properties of the vertebra and skull were defined, as well as 1D beam elements representing the spinal ligaments and discs. The model was then driven at the T1 vertebra using a literature-derived 10G acceleration curve to simulate frontal impact. Output peak Head X-acceleration was measured at 19.8G, which fell within the average peak response of 18.8 ± 4.6 G. Capsular ligament and interspinous ligament strains were measured along the cervical spine and the relative magnitudes were consistent with areas of likely injury at more severe impact accelerations. Once tested at more severe impact accelerations, this NHP HN model will provide a suitable way to study potential human cervical spine dynamics during frontal impact.

References

1.
Li
,
F.
,
Liu
,
N. S.
,
Li
,
H. G.
,
Zhang
,
B.
,
Tian
,
S. W.
,
Tan
,
M. G.
, and
Sandoz
,
B.
,
2019
, “
A Review of Neck Injury and Protection in Vehicle Accidents
,”
Transp. Saf. Environ.
,
1
(
2
), pp.
89
105
.10.1093/tse/tdz012
2.
Kent
,
R.
,
Cormier
,
J.
,
McMurry
,
T. L.
,
Ivarsson
,
J. B.
,
Funk
,
J.
,
Hartka
,
T.
, and
Sochor
,
M.
,
2023
, “
Spinal Injury Rates and Specific Causation in Motor Vehicle Collisions
,”
Accid. Anal. Prev.
,
186
, p.
107047
.10.1016/j.aap.2023.107047
3.
Freeman
,
M. D.
, and
Leith
,
W. M.
,
2020
, “
Estimating the Number of Traffic Crash-Related Cervical Spine Injuries in the United States; an Analysis and Comparison of National Crash and Hospital Data
,”
Accid. Anal. Prev.
,
142
, p.
105571
.10.1016/j.aap.2020.105571
4.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Moore
,
J.
,
Rinaldi
,
J.
,
Schlick
,
M.
, and
Maiman
,
D. J.
,
2012
, “
Upper and Lower Neck Loads in Belted Human Surrogates in Frontal Impacts
,”
Ann. Adv. Automot. Med.
,
56
, pp.
125
136
.
5.
Panjabi
,
M. M.
,
Pearson
,
A. M.
,
Ito
,
S.
,
Ivancic
,
P. C.
,
Gimenez
,
S. E.
, and
Tominaga
,
Y.
,
2004
, “
Cervical Spine Ligament Injury During Simulated Frontal Impact
,”
Spine
,
29
(
21
), pp.
2395
2403
.10.1097/01.brs.0000143173.92241.ab
6.
Elbel
,
M.
,
Kramer
,
M.
,
Huber-Lang
,
M.
,
Hartwig
,
E.
, and
Dehner
,
C.
,
2009
, “
Deceleration During ‘Real Life’ Motor Vehicle Collisions–A Sensitive Predictor for the Risk of Sustaining a Cervical Spine Injury?
Patient Saf. Surg.
,
3
(
1
), pp.
1
8
.10.1186/1754-9493-3-5
7.
Kullgren
,
A.
,
Krafft
,
M.
,
Nygren
,
Å.
, and
Tingvall
,
C.
,
2000
, “
Neck Injuries in Frontal Impacts: Influence of Crash Pulse Characteristics on Injury Risk
,”
Accid. Anal. Prev.
,
32
(
2
), pp.
197
205
.10.1016/S0001-4575(99)00096-2
8.
Panzer
,
M. B.
,
Fice
,
J. B.
, and
Cronin
,
D. S.
,
2011
, “
Cervical Spine Response in Frontal Crash
,”
Med. Eng. Phys.
,
33
(
9
), pp.
1147
1159
.10.1016/j.medengphy.2011.05.004
9.
Camacho
,
D. L.
,
Nightingale
,
R. W.
,
Robinette
,
J. J.
,
Vanguri
,
S. K.
,
Coates
,
D. J.
, and
Myers
,
B. S.
,
1997
, “
Experimental Flexibility Measurements for the Development of a Computational Head-Neck Model Validated for Near-Vertex Head Impact
,”
SAE
Paper No. 973345.10.4271/973345
10.
Schmidt
,
A.
,
Austermann
,
A.
,
Vasquez
,
K.
,
Shender
,
B.
, and
Chancey
,
V.
,
2009
, “
Establishing the Biodynamics Data Resource (BDR): Human Volunteer Impact Acceleration Research Data in the BDR
,”
Army Aeromedical Research Lab, Fort Rucker, AL
, accessed Apr. 10, 2023, https://apps.dtic.mil/sti/citations/ADA511523
11.
Thunnissen
,
J.
,
Wismans
,
J.
,
Ewing
,
C. L.
, and
Thomas
,
D. J.
,
1995
, “
Human Volunteer Head-Neck Response in Frontal Flexion: A New Analysis
,”
SAE
Paper No. 952721.10.4271/952721
12.
Thomas
,
D. J.
, and
Jessop
,
M. E.
,
1983
, “
Experimental Head and Neck Injury
,”
Impact Injury of the Head and Spine
,
C.
Ewing
,
D.
Thomas
,
A.
Sances
, and
S.
Larson
, eds.,
Charles C Thomas
,
Springfield, IL
, pp.
177
217
.
13.
Mauro
,
C. A.
,
Burns
,
K. C.
, and
Smith
,
D. F.
,
1986
, “
Final Report on Statistical Impact Acceleration Injury Prediction Models Based on-Gx Accelerometer Data
,” Desmatics Inc., State College, PA, Report No.
ADA173720
.https://archive.org/details/DTIC_ADA173720
14.
Pintar
,
F. A.
,
1986
, “
The Biomechanics of Spinal Elements (Ligaments, Vertebral Body, Disc)
,”
Marquette University
, Milwaukee, WI, accessed May 1, 2023, https://www.proquest.com/docview/303435301
15.
Somasundaram
,
K.
,
Zhang
,
L.
,
Sherman
,
D.
,
Begeman
,
P.
,
Lyu
,
D.
, and
Cavanaugh
,
J. M.
,
2019
, “
Evaluating Thoracolumbar Spine Response During Simulated Underbody Blast Impact Using a Total Human Body Finite Element Model
,”
J. Mech. Behav. Biomed. Mater.
,
100
, p.
103398
.10.1016/j.jmbbm.2019.103398
16.
Olszko
,
A. V.
,
Beltran
,
C. M.
,
Vasquez
,
K. B.
,
McGhee
,
J. S.
,
Chancey
,
V. C.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Baisden
,
J. L.
,
2018
, “
Initial Analysis of Archived Non-Human Primate Frontal and Rear Impact Data From the Biodynamics Data Resource
,”
Traffic Inj. Prev.
,
19
(
Suppl 1
), pp.
S44
S49
.10.1080/15389588.2017.1390570
17.
Unterharnscheidt
,
F.
,
1983
, “
Neutropathology of Rhesus Monkeys Undergoing -Gx Impact Acceleration
,”
Impact Injury of the Head and Spine
,
C.
Ewing
,
D.
Thomas
,
A.
Sances
, and
S.
Larson
, eds.,
Charles C Thomas
,
Springfield, IL
, pp.
94
176
.
18.
Thomas
,
D.
, and
Jessop
,
M. E.
,
1986
, “
Experimental Head and Neck Injury From Inertial Forces
,”
Mechanisms of Head and Spine Trauma
,
A.
Sances
,
D.
Thomas
,
C.
Ewing
,
S.
Larson
, and
F.
Unterharnscheidt
, eds.,
Aloray
,
Goshen, NY
, pp.
351
396
.
19.
Gerringer
,
J. W.
,
Somasundaram
,
K.
, and
Pintar
,
F. A.
,
2023
, “
Effect of Muscle Activation Scheme in Human Head-Neck Model on Estimating Cervical Spine Ligament Strain From Military Volunteer Frontal Impact Data
,”
Accid. Anal. Prev.
,
190
, p.
107157
.10.1016/j.aap.2023.107157
20.
Gehre
,
C.
,
Gades
,
H.
, and
Wernicke
,
P.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Responses
,” 21st International Technical Conference on the Enhanced Safety of Vehicles Conference (
ESV
), Stuttgart, Germany, June 13–16, Paper No. 09-0407. https://www-esv.nhtsa.dot.gov/Proceedings/21/09-0407.pdf
You do not currently have access to this content.