Abstract

Vascular intervention using guidewires and catheters has been widely performed, but the selection of appropriate device manipulation is often based on the experience and skills of the surgeon. Occasionally, accidents occur due to unexpected movements of these device tips, resulting in vascular damage. To address the challenge of unpredictable device motions and the associated risk of vessel wall damage, this study aims to investigate how different vessel shapes influence device motions. Additionally, we seek to identify effective manipulation techniques to mitigate these risks. We conducted experiments involving the insertion of a guidewire and a catheter into crank-shaped blood vessel phantom models with three different bending angles. Throughout the experiment, the movement of the inserted guidewire within the blood vessel phantoms was recorded using video recording. It was discovered that jumping distance and number of jumps increased as the distance between the catheter and guidewire tip increased. In experiments with a small bending angle, guidewire jumping was infrequent, but when it occurred, jumps tended to be longer (4.0 ± 2.4 mm). Conversely, experiments involving large bending angles showed short consecutive jumps, with the last jumping distance typically being a relatively longer (2.5 ± 1.3 mm). These findings indicate that irregular motions can be reduced by keeping a catheter close to a guidewire tip. Moreover, when the bending angle is large, a manipulator should be ready to prevent further motions as soon as they notice a small first jump.

References

1.
Ryu
,
C. W.
,
Lee
,
C. Y.
,
Koh
,
J. S.
,
Choi
,
S. K.
, and
Kim
,
E. J.
,
2011
, “
Vascular Perforation During Coil Embolization of an Intracranial Aneurysm: The Incidence, Mechanism, and Clinical Outcome
,”
Neurointervention
,
6
(
1
), pp.
17
22
.10.5469/neuroint.2011.6.1.17
2.
Miyachi
,
S.
,
Negoro
,
M.
,
Sahara
,
Y.
,
Suzuki
,
O.
,
Hattori
,
K.
,
Kobayashi
,
N.
,
Kojima
,
T.
, et al.,
2003
, “
Treatment Strategy for Cerebral Aneurysms Based on the Evidence of the Efficacy of GDC Embolization
,”
Interventional Neuroradiol.
,
9
(
1_suppl
), pp.
51
55
.10.1177/15910199030090S106
3.
Kocur
,
D.
,
Przybyłko
,
N.
,
Bażowski
,
P.
, and
Baron
,
J.
,
2018
, “
Rupture During Coiling of Intracranial Aneurysms: Predictors and Clinical Outcome
,”
Clin. Neurol. Neurosurg.
,
165
, pp.
81
87
.10.1016/j.clineuro.2018.01.006
4.
Halbach
,
V. V.
,
Higashida
,
R. T.
,
Dowd
,
C. F.
,
Barnwell
,
S. L.
, and
Hieshima
,
G. B.
,
1991
, “
Management of Vascular Perforations That Occur During Neurointerventional Procedures
,”
Am. J. Neuroradiol.
,
12
(
2
), pp.
319
327
.https://pubmed.ncbi.nlm.nih.gov/1902036/
5.
van der Sluijs
,
P. M.
,
Su
,
R.
,
Cornelissen
,
S. A. P.
,
van Es
,
A. C. G. M.
,
Lycklama A Nijeholt
,
G.
,
Roozenbeek
,
B.
,
van Doormaal
,
P. J.
, et al.,
2024
, “
Clinical Consequence of Vessel Perforations During Endovascular Treatment of Acute Ischemic Stroke
,”
Neuroradiology
,
66
(
2
), pp.
237
247
.10.1007/s00234-023-03246-2
6.
Wang
,
Y.
,
Guo
,
J.
,
Guo
,
S.
,
Lyu
,
C.
, and
Ma
,
Y.
,
2020
, “
A Replaceable Vascular Model-Based Platform for Experience Acquisition in Interventional Surgery
,” IEEE International Conference on Mechatronics and Automation (
ICMA
), Beijing, China, Oct. 13–16, pp.
1792
1797
.10.1109/ICMA49215.2020.9233526
7.
Ma
,
Y.
,
Guo
,
S.
,
Lyu
,
C.
, and
Wang
,
Y.
,
2020
, “
Irregular Motion Recognition of Guidewire in Vascular Interventional Surgery
,” IEEE International Conference on Mechatronics and Automation (
ICMA
), Beijing, China, Oct. 13–16, pp.
1619
1624
.10.1109/ICMA49215.2020.9233531
8.
Park
,
Y. K.
,
Yi
,
H. J.
,
Choi
,
K. S.
,
Lee
,
Y. J.
, and
Chun
,
H. J.
,
2018
, “
Intraprocedural Rupture During Endovascular Treatment of Intracranial Aneurysm: Clinical Results and Literature Review
,”
World Neurosurg.
,
114
, pp.
e605
e615
.10.1016/j.wneu.2018.03.040
9.
Orrù
,
E.
,
Roccatagliata
,
L.
,
Cester
,
G.
,
Causin
,
F.
, and
Castellan
,
L.
,
2013
, “
Complications of Endovascular Treatment of Cerebral Aneurysms
,”
Eur. J. Radiol.
,
82
(
10
), pp.
1653
1658
.10.1016/j.ejrad.2012.12.011
10.
Li
,
R.-Q.
,
Xie
,
X.-L.
,
Zhou
,
X.-H.
,
Liu
,
S.-Q.
,
Ni
,
Z.-L.
,
Zhou
,
Y.-J.
,
Bian
,
G.-B.
, and
Hou
,
Z.-G.
,
2021
, “
Real-Time Multi-Guidewire Endpoint Localization in Fluoroscopy Images
,”
IEEE Trans. Med. Imaging
,
40
(
8
), pp.
2002
2014
.10.1109/TMI.2021.3069998
11.
Deaton
,
N. J.
,
Brumfiel
,
T. A.
,
Sarma
,
A.
, and
Desai
,
J. P.
,
2023
, “
Simultaneous Shape and Tip Force Sensing for the Coast Guidewire Robot
,”
IEEE Rob. Autom. Lett.
,
8
(
6
), pp.
3725
3731
.10.1109/LRA.2023.3267008
12.
Li
,
P.
,
Feng
,
J.
,
Zhang
,
X.
,
Fang
,
D.
,
Zhang
,
J.
, and
Liang
,
C.
,
2024
, “
Modeling and Experimental Study of the Intervention Forces Between the Guidewire and Blood Vessels
,”
Med. Eng. Phys.
,
127
, p.
104166
.10.1016/j.medengphy.2024.104166
13.
Zhang
,
C.
,
Liang
,
S.
,
Cao
,
Y.
,
Sun
,
H.
, and
Feng
,
L.
,
2022
, “
Reducing the Guidewire Friction for Endovascular Interventional Surgery by Radial Micro-Vibration
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
69
(
3
), pp.
1020
1031
.10.1109/TUFFC.2022.3142763
14.
Beaman
,
C. B.
,
Kaneko
,
N.
,
Meyers
,
P. M.
, and
Tateshima
,
S.
,
2021
, “
A Review of Robotic Interventional Neuroradiology
,”
Am. J. Neuroradiol.
,
42
(
5
), pp.
808
814
.10.3174/ajnr.A6976
15.
Wang
,
S.
,
Liu
,
Z.
,
Cao
,
Y.
,
Zhang
,
L.
, and
Xie
,
L.
,
2023
, “
Improved Precise Guidewire Delivery of a Cardiovascular Interventional Surgery Robot Based on Admittance Control
,”
Int. J. Comput. Assisted Radiol. Surg.
,
19
(
2
), pp.
209
221
.10.1007/s11548-023-03017-7
16.
Yan
,
Y.
,
Guo
,
S.
,
Lin
,
Z.
,
Lyu
,
C.
,
Zhao
,
D.
,
Yang
,
P.
,
Zhang
,
Y.
,
Zhang
,
Y.
, and
Liu
,
J.
,
2023
, “
Grasping Force-Based Passive Safety Method for a Vascular Interventional Surgery Robot System
,”
IEEE Trans. Instrum. Meas.
,
72
, pp.
1
12
.10.1109/TIM.2023.3309365
17.
Wang
,
H.
,
Chang
,
J.
,
Yu
,
H.
,
Liu
,
H.
,
Hou
,
C.
, and
Lu
,
H.
,
2021
, “
Research on a Novel Vascular Interventional Surgery Robot and Control Method Based on Precise Delivery
,”
IEEE Access
,
9
, pp.
26568
26582
.10.1109/ACCESS.2021.3057425
18.
Song
,
C.
,
Xia
,
S.
,
Zhang
,
H.
,
Zhang
,
L.
,
Li
,
X.
,
Wang
,
K.
, and
Lu
,
Q.
,
2022
, “
Novel Endovascular Interventional Surgical Robotic System Based on Biomimetic Manipulation
,”
Micromachines
,
13
(
10
), p.
1587
.10.3390/mi13101587
19.
Song
,
H. S.
,
Yi
,
B. J.
,
Won
,
J. Y.
, and
Woo
,
J.
,
2022
, “
Learning-Based Catheter and Guidewire-Driven Autonomous Vascular Intervention Robotic System for Reduced Repulsive Force
,”
J. Comput. Des. Eng.
,
9
(
5
), pp.
1549
1564
.10.1093/jcde/qwac074
20.
Sharei
,
H.
,
Alderliesten
,
T.
,
van Den Dobbelsteen
,
J. J.
, and
Dankelman
,
J.
,
2018
, “
Navigation of Guidewires and Catheters in the Body During Intervention Procedures: A Review of Computer-Based Models
,”
J. Med. Imaging
,
5
(
1
), p.
1
.10.1117/1.JMI.5.1.010902
21.
Baier-Saip
,
J. A.
,
Baier
,
P. A.
,
Oliveira
,
J. C.
, and
Baier
,
H.
,
2018
, “
Higher-Order Approximation to the Guidewire Model Used in Simulators of Cardiac Catheterization and Multiple Segment Relaxations
,”
PRESENCE: Virtual Augmented Reality
,
27
(
4
), pp.
333
360
.10.1162/pres_a_00334
22.
Tang
,
W.
,
Wan
,
T. R.
,
Gould
,
D. A.
,
How
,
T.
, and
John
,
N. W.
,
2012
, “
A Stable and Real-Time Nonlinear Elastic Approach to Simulating Guidewire and Catheter Insertions Based on Cosserat Rod
,”
IEEE Trans. Biomed. Eng.
,
59
(
8
), pp.
2211
2218
.10.1109/TBME.2012.2199319
23.
Wang
,
Y.
,
Serracino‐Inglott
,
F.
,
Yi
,
X.
,
Yuan
,
X. F.
, and
Yang
,
X. J.
,
2016
, “
Real‐Time Simulation of Catheterization in Endovascular Surgeries
,”
Comput. Anim. Virtual Worlds
,
27
(
3–4
), pp.
185
194
.10.1002/cav.1702
24.
Li
,
S.
,
Qin
,
J.
,
Guo
,
J.
,
Chui
,
Y. P.
, and
Heng
,
P. A.
,
2011
, “
A Novel FEM‐Based Numerical Solver for Interactive Catheter Simulation in Virtual Catheterization
,”
Int. J. Biomed. Imaging
,
2011
(
1
), pp.
1
8
.10.1155/2011/815246
You do not currently have access to this content.