Abstract

The biomechanics of the spine are naturally multiplanar, but their experimental characterization remains primarily conducted in pure moment bending in anatomical planes: Flexion-Extension (FE) in the sagittal plane, Lateral Bending (LB) in the coronal plane, and Axial Rotation (AR) in the transverse plane. This leaves the biomechanical behavior between anatomical planes under-characterized. Computational tools for evaluating spinal implants and surgical treatments, like finite element models, are validated by comparison to experimental spinal loading. Thus, they are only able to represent spine behavior that is characterized through testing. A novel testing protocol was developed using a six-axis industrial robot to apply multiplanar experimental loading trajectories to characterize the spine's multiplanar behavior. One postmortem cervical spinal specimen was loaded in combined FE and LB bending about the craniocaudal axis, capturing its multidimensional stiffness behavior at several hundred unique joint kinematic “poses” throughout the spine's physiologic range of motion. The multiplanar trajectories are designed to enable parameterization of spinal stiffness behavior at each pose to the joint kinematic pathway taken to achieve the pose. Visualizing the multiplanar behavior of the spine also reveals spinal movement patterns that are not visible in planar bending alone. This method has elucidated that spinal stiffness under multiplanar loading cannot be inferred exclusively from behavior in planar loading, and that directionality of spinal loading has an impact on stiffness behavior. This information can be incorporated into finite element models and other tools for more robust predictions for spinal health.

References

1.
Rajaee
,
S. S.
,
Kanim
,
L. E.
, and
Bae
,
H. W.
,
2014
, “
National Trends in Revision Spinal Fusion in the USA: Patient Characteristics and Complications
,”
Bone Joint J.
,
96-B
(
6
), pp.
807
816
.10.1302/0301-620X.96B6.31149
2.
Saban
,
K. L.
,
Penckofer
,
S. M.
,
Androwich
,
I.
, and
Bryant
,
F. B.
,
2007
, “
Health-Related Quality of Life of Patients Following Selected Types of Lumbar Spinal Surgery: A Pilot Study
,”
Health Quality Life Outcomes
,
5
(
1
), p.
71
.10.1186/1477-7525-5-71
3.
Panjabi
,
M. M.
,
2003
, “
Clinical Spinal Instability and Low Back Pain
,”
Muscle Function Dysfunctional Spine
,
13
(
4
), pp.
371
379
.10.1016/S1050-6411(03)00044-0
4.
Studnicka
,
K.
, and
Ampat
,
G.
,
2024
, “
Lumbar Stabilization
,”
StatPearls, StatPearls Publishing
, St. Petersburg, FL.https://www.ncbi.nlm.nih.gov/books/NBK562179/
5.
El Bojairami
,
I.
,
El-Monajjed
,
K.
, and
Driscoll
,
M.
,
2020
, “
Development and Validation of a Timely and Representative Finite Element Human Spine Model for Biomechanical Simulations
,”
Sci. Rep.
,
10
(
1
), p.
21519
.10.1038/s41598-020-77469-1
6.
Bennett
,
S. E.
,
Schenk
,
R. J.
, and
Simmons
,
E. D.
,
2002
, “
Active Range of Motion Utilized in the Cervical Spine to Perform Daily Functional Tasks
,”
J. Spinal Disord. Tech.
,
15
(
4
), pp.
307
311
.10.1097/00024720-200208000-00008
7.
Busscher
,
I.
,
Ploegmakers
,
J. J. W.
,
Verkerke
,
G. J.
, and
Veldhuizen
,
A. G.
,
2010
, “
Comparative Anatomical Dimensions of the Complete Human and Porcine Spine
,”
Eur. Spine J.
,
19
(
7
), pp.
1104
1114
.10.1007/s00586-010-1326-9
8.
Costi
,
J. J.
,
Ledet
,
E. H.
, and
O'Connell
,
G. D.
,
2021
, “
Spine Biomechanical Testing Methodologies: The Controversy of Consensus vs Scientific Evidence
,”
JOR Spine
,
4
(
1
), p.
e1138
.10.1002/jsp2.1138
9.
Jemmett
,
R. S.
,
MacDonald
,
D. A.
, and
Agur
,
A. M. R.
,
2004
, “
Anatomical Relationships Between Selected Segmental Muscles of the Lumbar Spine in the Context of Multi-Planar Segmental Motion: A Preliminary Investigation
,”
Manual Ther.
,
9
(
4
), pp.
203
210
.10.1016/j.math.2004.07.006
10.
Oxland
,
T. R.
,
2016
, “
Fundamental Biomechanics of the Spine—What we Have Learned in the Past 25 Years and Future Directions
,”
SI: Spine Loading Deform.
,
49
(
6
), pp.
817
832
.10.1016/j.jbiomech.2015.10.035
11.
Hong-Wan
,
N.
,
Ee-Chon
,
T.
, and
Qing-Hang
,
Z.
,
2004
, “
Biomechanical Effects of C2–C7 Intersegmental Stability Due to Laminectomy With Unilateral and Bilateral Facetectomy
,”
Spine
,
29
(
16
), pp.
1737
1745
.10.1097/01.BRS.0000134574.36487.EB
12.
Kallemeyn
,
N.
,
Gandhi
,
A.
,
Kode
,
S.
,
Shivanna
,
K.
,
Smucker
,
J.
, and
Grosland
,
N.
,
2010
, “
Validation of a C2–C7 Cervical Spine Finite Element Model Using Specimen-Specific Flexibility Data
,”
Med. Eng. Phys.
,
32
(
5
), pp.
482
489
.10.1016/j.medengphy.2010.03.001
13.
Henninger
,
H. B.
,
Reese
,
S. P.
,
Anderson
,
A. E.
, and
Weiss
,
J. A.
,
2010
, “
Validation of Computational Models in Biomechanics
,”
Proc. Inst. Mech. Eng. Part H
,
224
(
7
), pp.
801
812
.10.1243/09544119JEIM649
14.
Wheeldon
,
J. A.
,
Pintar
,
F. A.
,
Knowles
,
S.
, and
Yoganandan
,
N.
,
2006
, “
Experimental Flexion/Extension Data Corridors for Validation of Finite Element Models of the Young, Normal Cervical Spine
,”
J. Biomech.
,
39
(
2
), pp.
375
380
.10.1016/j.jbiomech.2004.11.014
15.
Panjabi
,
M. M.
,
Ivancic
,
P. C.
,
Tominaga
,
Y.
, and
Wang
,
J.-L.
,
2005
, “
Intervertebral Neck Injury Criterion for Prediction of Multiplanar Cervical Spine Injury Due to Side Impacts
,”
Traffic Injury Prev.
,
6
(
4
), pp.
387
397
.10.1080/15389580500257100
16.
Daniels
,
A. H.
,
Paller
,
D. J.
,
Feller
,
R. J.
,
Thakur
,
N. A.
,
Biercevicz
,
A. M.
,
Palumbo
,
M. A.
,
Crisco
,
J. J.
, and
Madom
,
I. A.
,
2012
, “
Examination of Cervical Spine Kinematics in Complex, Multiplanar Motions After Anterior Cervical Discectomy and Fusion and Total Disc Replacement
,”
Int. J. Spine Surg.
,
6
(
1
), pp.
190
194
.10.1016/j.ijsp.2012.07.002
17.
Hasegawa
,
K.
,
Kitahara
,
K.
,
Hara
,
T.
,
Takano
,
K.
,
Shimoda
,
H.
, and
Homma
,
T.
,
2008
, “
Evaluation of Lumbar Segmental Instability in Degenerative Diseases by Using a New Intraoperative Measurement System
,”
J. Neurosurg.
,
8
(
3
), pp.
255
262
.10.3171/SPI/2008/8/3/255
18.
Spenciner
,
D.
,
Greene
,
D.
,
Paiva
,
J.
,
Palumbo
,
M.
, and
Crisco
,
J.
,
2006
, “
The Multidirectional Bending Properties of the Human Lumbar Intervertebral Disc
,”
Spine J.
,
6
(
3
), pp.
248
257
.10.1016/j.spinee.2005.08.020
19.
Darcy
,
S. P.
,
Gil
,
J. E.
,
Woo
,
S. L.-Y.
, and
Debski
,
R. E.
,
2009
, “
The Importance of Position and Path Repeatability on Force at the Knee During six-DOF Joint Motion
,”
Medical Eng. Phys.
,
31
(
5
), pp.
553
557
.10.1016/j.medengphy.2008.11.001
20.
Chow
,
D. H. K.
, and
Pope
,
M. H.
,
2019
, “
An Improved Stiffness Matrix Model of the Functional Spinal Unit for Application to an Improved Understanding of Pathological Changes
,”
Med. Eng. Phys.
,
74
, pp.
166
171
.10.1016/j.medengphy.2019.09.013
21.
Stokes
,
I. A.
,
Gardner-Morse
,
M.
,
Churchill
,
D.
, and
Laible
,
J. P.
,
2002
,
Measurement of a spinal motion segment stiffness matrix
.
J. Biomech.
,
35
(
4
), pp.
517
521
.10.1016/S0021-9290(01)00221-4
22.
Flores Zavala
,
A. J.
, and
Kim
,
Y. E.
,
1994
, “
Derivation of Stiffness Matrices for Modeling a Human Cervical Spine
,”
KSME J.
,
8
(
3
), pp.
231
240
.10.1007/BF02953351
23.
Holsgrove
,
T. P.
,
Gill
,
H. S.
,
Miles
,
A. W.
, and
Gheduzzi
,
S.
,
2015
, “
Dynamic, Six-Axis Stiffness Matrix Characteristics of the Intact Intervertebral Disc and a Disc Replacement
,”
Proc. Inst. Mech. Eng., Part H
,
229
(
11
), pp.
769
777
.10.1177/0954411915610601
24.
Taleghani
,
E.
,
Singh
,
A.
,
Hachem
,
B.
,
Benoit
,
D.
,
Rustagi
,
R.
,
Vithoulkas
,
G.
,
Mac-Thiong
,
J.-M.
, and
Syed
,
H.
,
2021
, “
Finite Element Assessment of a Disc-Replacement Implant for Treating Scoliotic Deformity
,”
Clinical Biomech.
,
84
, p.
105326
.10.1016/j.clinbiomech.2021.105326
25.
simVITRO
,
2014
, “
Universal Musculoskeletal Simulator Spine Module User Manual 2012RB-028-048.D
,”
simVITRO bioRobotics
,
simVITRO
,
Cleveland, OH
.
26.
Kelly
,
B. P.
, and
Bennett
,
C. R.
,
2013
, “
Design and Validation of a Novel Cartesian Biomechanical Testing System With Coordinated 6DOF Real-Time Load Control: Application to the Lumbar Spine (L1–S, L4–L5)
,”
J. Biomech.
,
46
(
11
), pp.
1948
1954
.10.1016/j.jbiomech.2013.05.008
27.
Šavlovskis
,
J.
, and
Raits
,
K.
,
2021
,
Anatomy Standard (Computer Software–2013)
.https://www.anatomystandard.com/index.html
28.
Shea
,
M.
,
Edwards
,
W. T.
,
White
,
A. A.
, and
Hayes
,
W. C.
,
1991
, “
Variations of Stiffness and Strength Along the Human Cervical Spine
,”
J. Biomech.
,
24
(
2
), pp.
95
107
.10.1016/0021-9290(91)90354-P
29.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Carandang
,
G.
,
Simonds
,
J.
,
Voronov
,
L. I.
,
Ghanayem
,
A. J.
,
Meade
,
K. P.
,
Gavin
,
T. M.
, and
Paxinos
,
O.
,
2003
, “
Effect of Compressive Follower Preload on the Flexion–Extension Response of the Human Lumbar Spine
,”
J. Orthop. Res.
,
21
(
3
), pp.
540
546
.10.1016/S0736-0266(02)00202-4
30.
Troyer
,
K. L.
, and
Puttlitz
,
C. M.
,
2011
, “
Human Cervical Spine Ligaments Exhibit Fully Nonlinear Viscoelastic Behavior
,”
Acta Biomater.
,
7
(
2
), pp.
700
709
.10.1016/j.actbio.2010.09.003
31.
Barrett
,
J. M.
,
Fewster
,
K. M.
,
Gruevski
,
K. M.
, and
Callaghan
,
J. P.
,
2021
, “
A Novel Least-Squares Method to Characterize in-Vivo Joint Functional Passive Regional Stiffness Zones
,”
Human Mov. Sci.
,
76
, p.
102765
.10.1016/j.humov.2021.102765
32.
Bell
,
K. M.
,
Debski
,
R. E.
,
Sowa
,
G. A.
,
Kang
,
J. D.
, and
Tashman
,
S.
,
2019
, “
Optimization of Compressive Loading Parameters to Mimic in Vivo Cervical Spine Kinematics in Vitro
,”
J. Biomech.
,
87
, pp.
107
113
.10.1016/j.jbiomech.2019.02.022
33.
Stolworthy
,
D. K.
,
Zirbel
,
S. A.
,
Howell
,
L. L.
,
Samuels
,
M.
, and
Bowden
,
A. E.
,
2014
, “
Characterization and Prediction of Rate-Dependent Flexibility in Lumbar Spine Biomechanics at Room and Body Temperature
,”
Spine J.: Off. J. North Am. Spine Soc.
,
14
(
5
), pp.
789
798
.10.1016/j.spinee.2013.08.043
34.
Lynch
,
K. M.
, and
Park
,
F. C.
,
2021
,
Modern Robotics: Mechanics, Planning, and Control
,
Cambridge University Press
, Cambridge, UK.
35.
Crenna
,
F.
,
Rossi
,
G. B.
, and
Berardengo
,
M.
,
2021
, “
Filtering Biomechanical Signals in Movement Analysis
,”
Sensors
,
21
(
13
), p.
4580
.10.3390/s21134580
36.
Ivancic
,
P. C.
,
Ito
,
S.
, and
Panjabi
,
M. M.
,
2007
, “
Dynamic Sagittal Flexibility Coefficients of the Human Cervical Spine
,”
Accid. Anal. Prev.
,
39
(
4
), pp.
688
695
.10.1016/j.aap.2006.10.015
You do not currently have access to this content.